

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 3

Session Schedule

• CIM hardware and software considerations

Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Automation:
 - set of all measures aiming at replacing human work through machines (e.g. automation is applied science)
 - the technology used for this purpose
 (e.g. this company has an automation department)
- Automation:
 - replacement of human work through machines
 (e.g. the automatisation of the textile factory caused uproar of the workers)
 - replacement of conscious activity by reflexes
 (e.g. drill of the sailors allows the automatisation of ship handling)
- Automation:
 - The use of computers and machines instead of people to do a job

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

CIM history (Continued...)

- CIM scope within the enterprises:
 - Marketing
 - Product Design
 - Planning
 - Purchase
 - Manufacturing Engineering
 - Factory Automation Hardware
 - Warehousing
 - Logistics and Supply Chain Management
 - Finance
 - Information Management

CIM hardware and software considerations

• CIM equipment:

- CNC machines
- Computerized work centers
- Robotic work cells
- DNC/FMS systems
- Work handling and tool handling devices
- Storage devices
- Sensors, shop floor data collection devices
- Inspection machines
- Computers, controllers
- CAD/CAM systems, workstations / terminals, data entry terminals, bar code readers, RFID tags
- Printers, plotters and other peripheral devices, modems, cables, connectors

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

CIM hardware and software considerations

- CIM software comprises computer programs like:
 - Management Information System; Database Management
 - Sales, Order Entry
 - Marketing
 - Finance
 - Analysis; Modeling and Design
 - Simulation
 - Inventory Control; Materials Handling
 - Monitoring; Shop Floor Data Collection
 - Process Planning
 - Manufacturing Facilities Planning; Production Control
 - Work Flow Automation
 - Quality Management

Homework # 1

- Provide at least three software solutions for each of the following scopes:
 - Database Management
 - Marketing
 - Simulation
 - Work Flow Automation
 - Quality Management
- The HW should be sent to <u>omidf@ie.sharif.edu</u> till Saturday, 6th of Mehr(Sep, 28th, 2013)
- Email subject: "HW1:studentnumber"

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Computer Integrated Manufacturing (CIM) encompasses
 - The entire range of <u>product development and manufacturing activities</u> with all the functions being carried out
 - With the help of dedicated <u>software packages</u>.
 - The data required for various functions are passed from <u>one application software</u> to another in a <u>seamless</u> manner
- CIM considers
 - All activities from the <u>design of the product</u> to <u>customer support</u> in an <u>integrated</u> way,

CIM Database management

- The information required for manufacturing cover a wide range of disciplines and serving a multitude of inter-related yet vastly differing needs.
- A database can be defined as a collection of data in a single location designed to be used by different programmers for a variety of applications.
- A database is a collection of logically related data stored together in a set of files intended to serve one or more applications in an optimal fashion.
- Database must also have a predetermined structure and organization suitable for access, interpretation, or processing either manually or automatically

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

CIM Database management

- The CIM database comprises basically four classes of data:
 - Product Data: Data about parts to be manufactured. It includes text and geometry data.
 - Manufacturing Data: The information as to how the parts are to be manufactured is available in production data.
 - Operational Data: Closely related to manufacturing data but describes the things specific to production, such as lot size, schedule, assembly sequence, qualification scheme.
 - Resource Data: This is closely related to operational data but describes the resources involved in operations, such as materials, machines, human resources and money

CIM Database management

- Varied tasks one might expect to accomplish in a CIM environment:
 - Designing assemblies and performing tolerance analysis on those assemblies.
 - Preparing production drawings of assemblies, individual parts, tooling, fixtures and other manufacturing facilities.
 - Preparing part lists and bill of materials (BOM).
 - Preparing process plans for individual part manufacture and assembly.
 - Programming CNC machines for processing complete parts (CAM).
 - Designing work cells and programming the movement of components in those cells using work handling devices like robots, conveyors, AGV's/RGV's.
 - Preparing inspection programs including programs for CNC machines.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

Make your own CIM database !!

- To understand the necessities of a CIM data base:
 - Groups with 5-6 students will be established
 - *Each group starts the essential activities for forming a CIM database in the class theoretically*
 - The implementation of theoretical activities will be conducted during the weeks in manufacturing laboratory
 - The implementation results will form the groups CIM databases during the course

Make your own CIM database !!

- First step:
 - Definition of the groups
 - You can introduce your group members :

• You will be assigned to random defined groups.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 3

Make your own CIM database !!

- Second step:
 - *Choose a programming language e.g.*
 - Microsoft SQL server
 - Oracle
 - Microsoft Access
 - Visual studio
 - C++
 - C
 - Pascal

Make your own CIM database !!

- Third step: (Continued ...)
 - Theoretically plan the procedures which enable:
 - The transfer of your data base from one computer to another (Back up operation)
 - The extract of information from an array objects (Information)
 - The extract of knowledge from a series of information (knowledge)

Homework # 2

- *Provide a simple implementation regards to your theoretical activities in steps one to three:*
 - Define a simple discourse
 - Use a programming language
 - Define some simple objects in the selected discourse
 - Define some simple attributes for selected objects
 - Implement your theoretical procedures in step 3
- The HW should be sent to <u>omidf@ie.sharif.edu</u> till Saturday, 15th of Mehr(Oct, 7th, 2013)
- Email subject: "HW2:GroupCode"