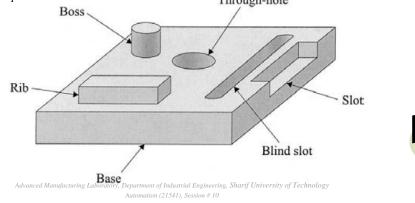

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology


Session # 10

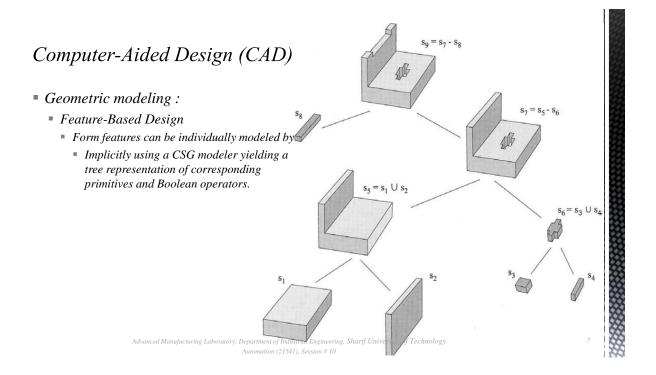
Session Schedule

- Computer-Aided Design (CAD)
 - Geometric modeling
 - Geometric modeling techniques
 - Geometric data exchange

- Geometric modeling :
 - Feature-Based Design
 - Features can be seen as specific geometric shapes on a part that can be associated with certain fabrication processes.
 Through-hole

Computer-Aided Design (CAD)

- Geometric modeling :
 - Feature-Based Design
 - The objective of design by features is :
 - To increase the efficiency of the designer during the geometric-modeling phase
 - To provide a bridge (mapping) to engineering-analysis and process-planning phases of product development.



- Geometric modeling :
 - Feature-Based Design
 - Form features can be individually modeled by
 - The user explicitly using a B-Rep modeler yielding unambiguous topological relationship information
 - Implicitly using a CSG modeler yielding a tree representation of corresponding primitives and Boolean operators.

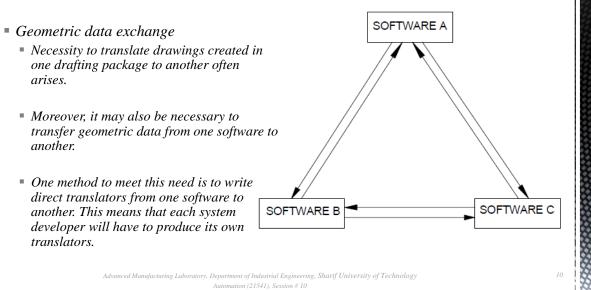
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD) J_2 ν_2 f_{8} • Geometric modeling : £6 Feature-Based Design f3 e_3 *Form features can be individually* modeled by The user explicitly using a B-Rep modeler yielding unambiguous Cylin topological relationship information e_1 ν_ι f_2 \int_2 1 e e2 e_1 ٧1 ν_1 v_2 ν_3 v_4 vs Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

3

Homework # 8

- *Extend the simple program of HW4 for interpreting simple Features.*
 - Consider the following simple shape. You should use your CIM data base structure to maintain the geometric data.
 - Provide simple structures to maintain the vertex, edge, loop and faces.
 - *Provide a simple algorithm to recognize the step in the shape as A design feature.*
- The HW should be sent to <u>omidf@ie.sharif.edu</u> till Monday, 11th of Azar(Dec, 2nd, 2013)
- Email subject: "HW8:GroupCode"


- Geometric data exchange
 - The heart of any CAD model is the component database.

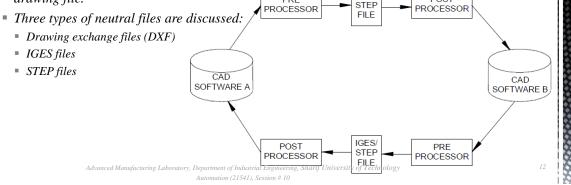
This includes

- The graphics entities like points, lines, arcs, circles etc. and the co-ordinate points, which define the location of these entities.
- This geometric data is used in all downstream applications of CAD, which include
 - Finite element modeling and analysis,
 - Process planning,
 - *Estimation,*
 - CNC programming,
 - Robot programming,
 - Programming of co-ordinate measuring machines,
 - *ERP system programming and simulation.*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session #10

Computer-Aided Design (CAD)

Homework # 9


- In this HW you will try the direct translation of geometric data related to HW8
 - We consider the following chain for providing the geometric data translation:
 - Group 1 → Group 2 → Group 3 → Group 4 → Group 5 → Group 6 → Group 7 → Group 8
- The HW should be sent to <u>omidf@ie.sharif.edu</u> till Monday, 18th of Azar (Dec, 9th, 2013)
- Email subject: "HW9:GroupCode"

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - A solution to the problem of direct translators is to use neutral files.
 - These neutral files will have standard formats and software packages can have pre-processors to convert drawing data to neutral file and postprocessors to convert neutral file data to drawing file.

 PRE
 IGES/ estep
 POST

Computer-Aided Design (CAD)	0 SECTION 2 HEADER 9
Geometric data exchange	
Drawing exchange files/formats (DXF) is a CAD data file format developed by Autodesk for enabling data interoperability between AutoCAD and other programs.	AcDbEntity 8 0 100 AcDbLine 10
 The basic organization of a DXF file is as follows: HEADER section CLASSES section TABLES section ENTITIES section OBJECTS section THUMBNAILIMAGE section END OF FILE 	LINE 5 12D
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10	ENDSEC 0 EOF

- Geometric data exchange
 - Drawing exchange files/formats (DXF) structures:
 - HEADER section General information about the drawing. Each parameter has a variable name and an associated value.
 - *CLASSES section Holds the information for application-defined classes whose instances appear in the BLOCKS, ENTITIES, and OBJECTS sections of the database.*
 - ★ Generally does not provide sufficient information to allow interoperability with other programs.

- Geometric data exchange
 - Drawing exchange files/formats (DXF) structures:
 - TABLES section This section contains definitions of named items.
 - Application ID (APPID) table
 - Block Record (BLOCK_RECORD) table
 - Dimension Style (DIMSTYPE) table
 - Layer (LAYER) table
 - Linetype (LTYPE) table
 - Text style (STYLE) table
 - User Coordinate System (UCS) table
 - View (VIEW) table
 - Viewport configuration (VPORT) table

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - Drawing exchange files/formats (DXF) structures:
 - BLOCKS section This section contains Block Definition entities describing the entities comprising each Block in the drawing.
 - ENTITIES section This section contains the drawing entities, including any Block References.
 - OBJECTS section Contains the data that apply to nongraphical objects, used by AutoLISP and ObjectARX applications.
 - THUMBNAILIMAGE section Contains the preview image for the DXF file.