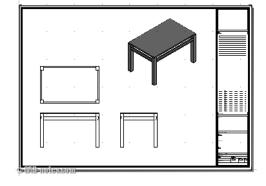
Automation (21-541)

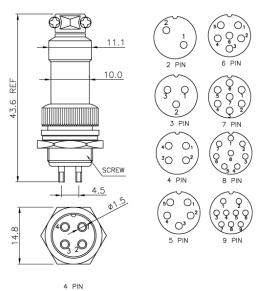
Advanced Manufacturing Laboratory

Department of Industrial Engineering

Sharif University of Technology

Session # 6




Session Schedule

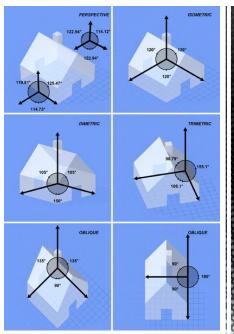
- Computer-Aided Design (CAD)
 - Introduction
 - Graphic primitives

■ *Introduction*:

 Traditionally drawings are prepared on plane drawing sheets.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Smarty University of rectinious;

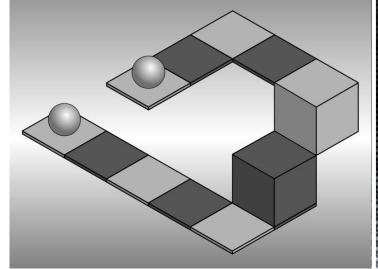
Automation (21541), Session # 6


Computer-Aided Design (CAD)

■ *Introduction:*

- Plane drawing sheets have several limitations:
 - The sketches have to be made only in two dimensions
 - Though the depth can be represented by
 - pictorial projections like:

isometric and perspective projections,


the projections have to be necessarily reduced to two dimensions.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

■ *Introduction*:

Plane drawing sheets have several limitations:

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

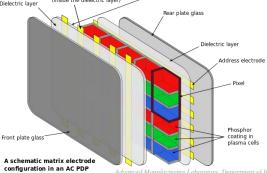
Computer-Aided Design (CAD)

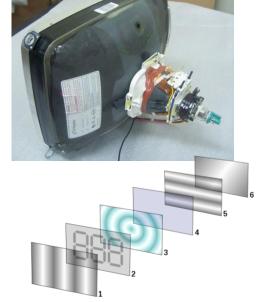
■ *Introduction:*

- *Use of computer graphics has opened up tremendous possibilities for the designer:*
 - The object is represented by its geometric model in three dimensions (X, Y and Z)
 - The mathematical representation reduces creation of views like orthographic, isometric, axonometric or perspective projections into simple viewing transformations
 - Sections can be automatically created.
 - Revision and revision control are easy.
 - Drawings (geometric models) can be modified easily.

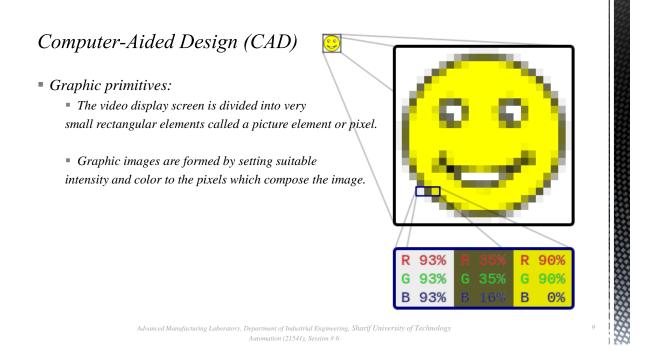
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

- Graphic primitives:
 - Modern computer graphics displays consist of basically three components.
 - Monitor
 - Digital Memory or Frame Buffer
 - Display Controller

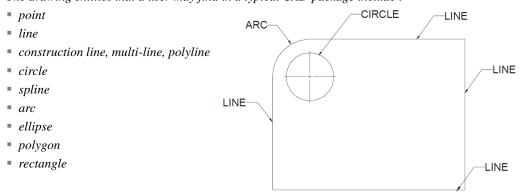



Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technolog Automation (21541), Session # 6

Computer-Aided Design (CAD)


- Graphic primitives:
 - CRT (Cathode ray tube)
 - LCD (liquid crystal display)
 - PDP (plasma display panel)
 Display electrodes

 Magnesium oxide coa



Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

- *Graphic primitives:*
 - A drawing is created by an assembly of points, lines, arcs, circles.
 - The drawing entities that a user may find in a typical CAD package include:

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

- *Graphic primitives:*
 - Line
 - Straight line segments are used a great deal in computer generated pictures.
 - The following criteria have been stipulated for line drawing displays:
 - Lines should appear straight
 - Lines should terminate accurately
 - Lines should have constant density
 - Line density should be independent of length and angle
 - Line should be drawn rapidly

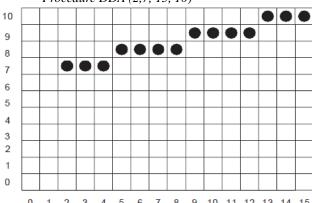
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

- *Graphic primitives:*
 - DDA algorithm (Digital Differential Analyzer)
 - The digital differential analyzer generates lines from their differential equations.
 - The DDA works on the principle that X and Y are simultaneously incremented by small steps proportional to the first derivatives of X and Y.
 - In the real world of limited precision displays, addressable pixels only must be generated.

```
• Graphic primitives:
```

```
" Procedure DDA (x1, y1, x2, y2 : integer);
" As begin:
" STEP=max {abs(x2-x1), abs(y2-y1)}
" Dx=(x2-x1)/STEP; Dy=(y2-y1)/STEP;
" X=x1; Y=y1;
" For (int i=0; i<=STEP; i++)
{
    plot(truncate(X+0.5),truncate(Y+0.5));
    X= X+Dx;
    Y= Y+Dy;
}</pre>
```


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

1

Computer-Aided Design (CAD)

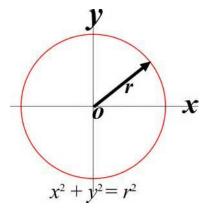
• Graphic primitives:

Procedure DDA (2,7, 15, 10)

X	Υ	trunc (X)	trunc (Y)
2.5	7.50	2	7
3.5	7.73	3	7
4.5	7.96	4	7
5.5	8.19	5	8
6.5	8.42	6	8
7.5	8.65	7	8
8.5	8.88	8	8
9.5	9.11	9	9
10.5	9.34	10	9
11.5	9.57	11	9
12.5	9.80	12	9
13.5	10.23	13	10
14.5	10.46	14	10
15.5	10.69	15	10

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

```
• Graphic primitives:
```

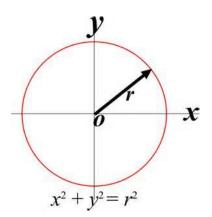

```
    P=(1-t)Po+(t)P1 0≤t≤1
    Procedure DDA (x1, y1, x2, y2: integer);
    As begin:
    STEP=max {abs(x2-x1), abs(y2-y1)}
    dt=1/STEP;
    (Dx,Dy)=dt(P1-P0);
    X=x1; Y=y1;
    For (int i=0; i<=STEP; i++)</li>
    plot(truncate(X+0.5),truncate(Y+0.5)); X= X+Dx; Y= Y+Dy;
```

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6 1

Homework: AT:G:02-#

- Provide a simple program to plot geometric objects. You should use your CIM data base structure to maintain the geometric data.
 - A simple interface can be applied to plot the geometric objects.
 - You should provide your first module/procedure to plot a line by getting the required Cartesian locations in a 2D space.
- The HW should be sent to <u>Fvalilai@sharif.edu</u> till Tuesday, 6th of Aban (Oct, 28th, 2014)
- Email subject: "AT:G:02:#"

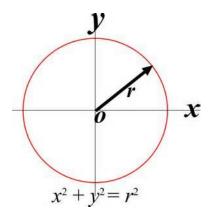
- Graphic primitives:
 - Procedure DDA (X1, Y1, R: integer);



Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6 17

Computer-Aided Design (CAD)

- *Graphic primitives:*
 - \blacksquare Procedure DDA (X1, Y1, R: integer);
 - As begin
 - For(int tetha=0;tetha<360;thetha++)


$$Plot(XI + R*cos(theta), YI + R*sin(theta))$$

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

• *Graphic primitives:*

```
Procedure DDA (X1, Y1, R: integer);
As beging
DTetha= π
For(int tetha π; thetha+=Dtetha)
Plot(X1 σs) (Y1+R*sin(theta))
```


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6