Automation (21-541)
Advanced Manufacturing Laboratory
Department of Industrial Engineering
Sharif University of Technology

Session # 8

Session Schedule

- Computer-Aided Design (CAD)
 - Geometric modeling
 - Geometric modeling techniques
 - Geometric data exchange
Computer-Aided Design (CAD)

- Geometric modeling:
 - Computer representation of the geometry of a component using software is called a geometric model.

- Geometric modeling is done in three principal ways:
 - Wire frame modeling
 - Surface modeling
 - Solid modeling

- In wire frame modeling the object is represented by its edges.
- In the initial stages of CAD, wire frame models were in 2-D. Subsequently 3-D wire frame modeling software was introduced.
Computer-Aided Design (CAD)

- Geometric modeling:
 - Surface modeling
 - In this approach, a component is represented by its surfaces which in turn are represented by their vertices and edges.

- Standard surface types available for surface modeling:
 - box,
 - pyramid,
 - wedge,
 - dome,
 - sphere,
 - cone,
 - torus,
 - dish
 - and mesh
Homework: AT:G:04:#

- Extend the simple program of HW2 for interpreting simple following objects. You should use your CIM data base structure to maintain the geometric data.
 - A simple interface can be applied to plot a cub and a sphere.

- The HW should be sent to Fvalilai@Sharif.edu till Sunday, 25th of Aban (Nov, 16th, 2014)
- Email subject: “AT:G:04: #”

Computer-Aided Design (CAD)

- Geometric modeling:
 - Solid modeling
 - The representation of solid models uses the fundamental idea that a physical object divides the 3-D Euclidean space into two regions, one exterior and one interior, separated by the boundary of the solid.
Computer-Aided Design (CAD)

- Geometric modeling:
 - Solid modeling
 - There are six common representations in solid modeling.
 - Spatial Enumeration
 - Cell Decomposition
 - Boundary Representation
 - Sweep Methods
 - Primitive Instancing
 - Constructive Solid Geometry (CSG)

- Constructive Solid Geometry (CSG)
 - In a CSG model, physical objects are created by combining basic elementary shapes known as primitives like blocks, cylinders, cones, pyramids and spheres.
 - The Boolean operations like union (\cup), difference (\setminus) and intersection (\cap) are used to carry out this task.
Homework:

- Consider the following solid model. Use the CGS method and draw the CSG tree model based on the CSG primitive objects and operators.

- The HW should be sent to FValilai@sharif.edu till Tuesday, 27th of Aban (Nov, 18th, 2014)
- Email subject: "AT: I: **: StudentNumber"

Computer-Aided Design (CAD)

- Geometric modeling:
 - Solid modeling
 - Boundary Representation (B-rep)
 - Boundary representation is built on the concept that a physical object is enclosed by a set of faces which themselves are closed and oriented surfaces.

- Geometric entities -- Topological entities
 - Point -- Vertex
 - Curve, line -- Edge
 - Surface -- Face
Computer-Aided Design (CAD)

- **Geometric modeling:**
 - **Solid modeling**
 - Solid models differ from wire frame and surface models in the kind of geometric information they provide.
 - Wire frame models only show the edge geometry of an object. They say nothing about what is inside an object.
 - Surface models provide surface information, but they too lack information about an object's internal structure. Solid models provide complete geometric descriptions of objects.
 - Solid models can be used for quick and reliable design analysis.
 - Solid models apart from geometric information provide important data such as volume, mass, mass properties and center of gravity.
 - The designer can also export models created to other applications like
 - finite element analysis (FEA),
 - Rapid prototyping and other special engineering applications
Computer-Aided Design (CAD)

- Geometric modeling:
 - Feature-Based Design
 - Features can be seen as specific geometric shapes on a part that can be associated with certain fabrication processes.

![Diagram of a part with features](image)

- Geometric modeling:
 - Feature-Based Design
 - Features have been commonly classified as
 - Form,
 - Material,
 - Precision,
 - and technological features.

- It has been long advocated that if these features were highlighted during the modeling phase of a product's design process, in the subsequent production-planning phases, engineers could take advantage of this information in accessing historical data regarding the production of these features.
Computer-Aided Design (CAD)

- Geometric modeling:
 - Feature-Based Design
 - The objective of design by features is:
 - To increase the efficiency of the designer during the geometric-modeling phase.
 - To provide a bridge (mapping) to engineering-analysis and process-planning phases of product development.

- Geometric modeling:
 - Feature-Based Design
 - In feature-based design, parts' solid models are configured through a sequence of form-feature attachments (subtractions and additions) to the primary (base stock) representations of the parts, which can be as simple as a rectangular box.
 - These features could be chosen from a library of predefined (and sometimes application dependent) features or could be extracted from the solid models of earlier designs.