Automation (21-541)
Advanced Manufacturing Laboratory
Department of Industrial Engineering
Sharif University of Technology

Session # 3

Session Schedule

- CIM hardware and software considerations
Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Automation:
 - set of all measures aiming at replacing human work through machines
 (e.g. automation is applied science)
 - the technology used for this purpose
 (e.g. this company has an automation department)

- Automation:
 - replacement of human work through machines
 (e.g. the automatisation of the textile factory caused uproar of the workers)
 - replacement of conscious activity by reflexes
 (e.g. drill of the sailors allows the automatisation of ship handling)

- Automation:
 - The use of computers and machines instead of people to do a job

CIM history (Continued...)

- CIM scope within the enterprises:
 - Marketing
 - Product Design
 - Planning
 - Purchase
 - Manufacturing Engineering
 - Factory Automation Hardware
 - Warehousing
 - Logistics and Supply Chain Management
 - Finance
 - Information Management
CIM hardware and software considerations

- **CIM equipment:**
 - CNC machines
 - Computerized work centers
 - Robotic work cells
 - DNC/FMS systems
 - Work handling and tool handling devices
 - Storage devices
 - Sensors, shop floor data collection devices
 - Inspection machines
 - Computers, controllers
 - CAD/CAM systems, workstations / terminals, data entry terminals, bar code readers, RFID tags
 - Printers, plotters and other peripheral devices, modems, cables, connectors

CIM software comprises computer programs like:

- Management Information System; Database Management
- Sales, Order Entry
- Marketing
- Finance
- Analysis; Modeling and Design
- Simulation
- Inventory Control; Materials Handling
- Monitoring; Shop Floor Data Collection
- Process Planning
- Manufacturing Facilities Planning; Production Control
- Work Flow Automation
- Quality Management
Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Computer Integrated Manufacturing (CIM) encompasses
 - The entire range of product development and manufacturing activities with all the functions being carried out
 - With the help of dedicated software packages.
 - The data required for various functions are passed from one application software to another in a seamless manner
- CIM considers
 - All activities from the design of the product to customer support in an integrated way.

CIM Database management

- The information required for manufacturing cover a wide range of disciplines and serving a multitude of inter-related yet vastly differing needs.

- A database can be defined as a collection of data in a single location designed to be used by different programmers for a variety of applications.

- A database is a collection of logically related data stored together in a set of files intended to serve one or more applications in an optimal fashion.

- Database must also have a predetermined structure and organization suitable for access, interpretation, or processing either manually or automatically.
CIM Database management

- **The CIM database comprises basically four classes of data:**
 - **Product Data:** Data about parts to be manufactured. It includes text and geometry data.
 - **Manufacturing Data:** The information as to how the parts are to be manufactured is available in production data.
 - **Operational Data:** Closely related to manufacturing data but describes the things specific to production, such as lot size, schedule, assembly sequence, qualification scheme.
 - **Resource Data:** This is closely related to operational data but describes the resources involved in operations, such as materials, machines, human resources and money.

CIM Database management

- **Varied tasks one might expect to accomplish in a CIM environment:**
 - Designing assemblies and performing tolerance analysis on those assemblies.
 - Preparing production drawings of assemblies, individual parts, tooling, fixtures and other manufacturing facilities.
 - Preparing part lists and bill of materials (BOM).
 - Preparing process plans for individual part manufacture and assembly.
 - Programming CNC machines for processing complete parts (CAM).
 - Designing work cells and programming the movement of components in those cells using work handling devices like robots, conveyors, AGV’s/RGV’s.
 - Preparing inspection programs including programs for CNC machines.
Make your own CIM database !!

- To understand the necessities of a CIM data base:
 - Groups with 5-6 students will be established

- Each group starts the essential activities for forming a CIM database in the class theoretically

- The implementation of theoretical activities will be conducted during the weeks in manufacturing laboratory

- The implementation results will form the groups CIM databases during the course

Make your own CIM database !!

- First step:
 - Definition of the groups
 - You can introduce your group members:

- You will be assigned to random defined groups.
Make your own CIM database !!

- **Second step:**
 - Choose a programming language e.g.
 - Microsoft SQL server
 - Oracle
 - Microsoft Access
 - Visual studio
 - C++
 - C
 - Pascal

- **Third step:**
 - Theoretically plan the procedures which enable:
 - The storage of object related data (attributes)
 - The sort of data related to an array of objects (Tables, Primary keys)
 - The storage of relation among related objects (relational database, Foreign keys)
 - The retrieve operation of a definite object by means of its attributes (Select)
 - The modification/delete operation of a definite object by means of its attributes (Update/Delete)
Make your own CIM database !!

- **Third step: (Continued ...)**
 - **Theoretically plan the procedures which enable:**
 - The transfer of your data base from one computer to another (Back up operation)
 - The extract of information from an array objects (Information)
 - The extract of knowledge from a series of information (knowledge)