

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session #6

Session Schedule

- Computer-Aided Design (CAD)
 - Introduction
 - Graphic primitives

Advanced Manufacturing Laboratory, Department of Industrian Engineering, oncery oncersity of recursory Automation (21541), Session # 6

Computer-Aided Design (CAD)

Introduction:

- Plane drawing sheets have several limitations:
 - The sketches have to be made only in two dimensions
 - Though the depth can be represented by
 - pictorial projections like:
 - isometric and perspective projections,

the projections have to be necessarily reduced to two dimensions.

- Introduction:
 - Plane drawing sheets have several limitations:

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

- Introduction:
 - Use of computer graphics has opened up tremendous possibilities for the designer:
 - The object is represented by its geometric model in three dimensions (X, Y and Z)
 - The mathematical representation reduces creation of views like orthographic, isometric, axonometric or perspective projections into simple viewing transformations
 - Sections can be automatically created.
 - Revision and revision control are easy.
 - Drawings (geometric models) can be modified easily.

- Graphic primitives:
 - Modern computer graphics displays consist of basically three components.
 - Monitor
 - Digital Memory or Frame Buffer
 - Display Controller

Automation (21541), Session # 6

Computer-Aided Design (CAD) • Graphic primitives: • The video display screen is divided into very small rectangular elements called a picture element or pixel. • Graphic images are formed by setting suitable intensity and color to the pixels which compose the image. • R 93% C 35% C 90% C 90%

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

- A drawing is created by an assembly of points, lines, arcs, circles.
- The drawing entities that a user may find in a typical CAD package include :

- Graphic primitives:
 - Line
 - Straight line segments are used a great deal in computer generated pictures.
 - The following criteria have been stipulated for line drawing displays :
 - Lines should appear straight
 - Lines should terminate accurately
 - Lines should have constant density
 - Line density should be independent of length and angle
 - Line should be drawn rapidly

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

- Graphic primitives:
 - DDA algorithm (Digital Differential Analyzer)
 - The digital differential analyzer generates lines from their differential equations.
 - The DDA works on the principle that X and Y are simultaneously incremented by small steps proportional to the first derivatives of X and Y.
 - In the real world of limited precision displays, addressable pixels only must be generated.

```
• Graphic primitives:
```

- Procedure DDA (x1, y1, x2, y2 : integer);
- As begin:
- STEP=max {abs(x2-x1), abs(y2-y1)}
- Dx=(x2-x1)/STEP; Dy=(y2-y1)/STEP;
- *X*=*x*1; *Y*=*y*1;
- *For* (*int i*=0; *i*<=*STEP*; *i*++)
- {

```
plot(truncate(X+0.5),truncate(Y+0.5));

X = X+Dx;

Y = Y+Dy;
```

}

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

X	Y	trunc (X)	trunc (Y)
2.5	7.50	2	7
3.5	7.73	3	7
4.5	7.96	4	7
5.5	8.19	5	8
6.5	8.42	6	8
7.5	8.65	7	8
8.5	8.88	8	8
9.5	9.11	9	9
10.5	9.34	10	9
11.5	9.57	11	9
12.5	9.80	12	9
13.5	10.23	13	10
14.5	10.46	14	10
15.5	10.69	15	10

```
    Graphic primitives:
```

- $P = (1-t)P_0 + (t)P_1 \quad 0 \le t \le l$
- Procedure DDA (x1, y1, x2, y2 : integer);
- As begin:
- STEP=max {abs(x2-x1), abs(y2-y1)}
- dt=1/STEP;
- $(Dx, Dy) = dt(P_1 P_0);$
- X=x1; Y=y1;
- *For* (*int i*=0; *i*<=*STEP*; *i*++)

```
{
```

```
plot(truncate(X+0.5),truncate(Y+0.5));
X= X+Dx;
Y= Y+Dy;
```

```
}
```

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Homework: AT-G-02-#

- Provide a simple program to plot geometric objects. You should use your CIM data base structure to maintain the geometric data.
 - A simple interface can be applied to plot the geometric objects.
 - You should provide your first module/procedure to plot a line by getting the required Cartesian locations in a 2D space.
- The HW should be sent to <u>Fvalilai@sharif.edu</u> till Saturday, 23rd of Farvardin (April, 12th, 2014)
- Email subject: "AT-G-02-#"

- Graphic primitives:
 - Procedure DDA (X1, Y1, R : integer);

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 6

Computer-Aided Design (CAD)

- Graphic primitives:
 - Procedure DDA (X1, Y1, R : integer);
 - As begin
 - *For(int tetha=0;tetha<360;thetha++)*

Plot(X1+R*cos(theta),Y1+R*sin(theta))

}

