

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 10

Session Schedule

- Computer-Aided Design (CAD)
 - Geometric modeling
 - Geometric data exchange

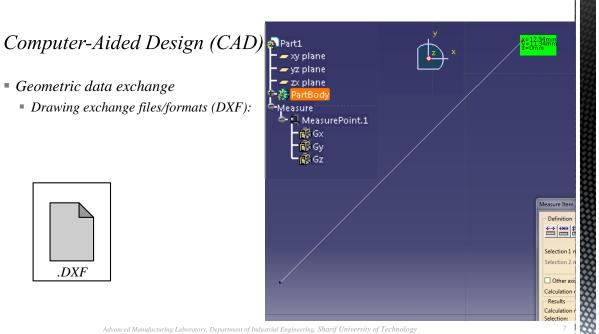
- Geometric data exchange
 - The heart of any CAD model is the component database.

This includes

- The graphics entities like points, lines, arcs, circles etc. and the co-ordinate points, which define the location of these entities.
- This geometric data is used in all downstream applications of CAD, which include
 - Finite element modeling and analysis,
 - Process planning,
 - *Estimation*,
 - CNC programming,
 - Robot programming,
 - Programming of co-ordinate measuring machines,
 - *ERP system programming and simulation.*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

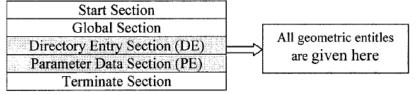
Computer-Aided Design (CAD)

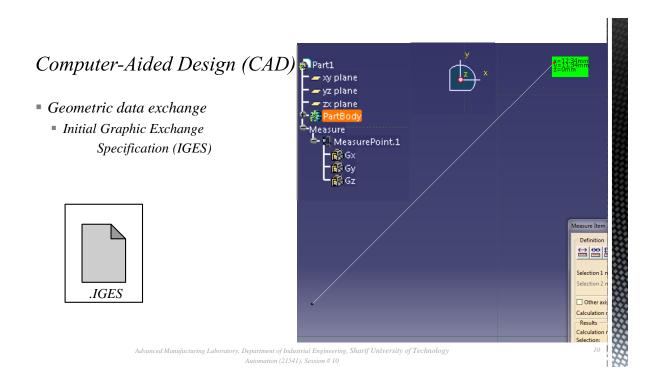

- Geometric data exchange
 - A solution to the problem of direct translators is to use neutral files.
 - These neutral files will have standard formats and software packages can have pre-processors to convert drawing data to neutral file and postprocessors to convert neutral file data to drawing file.
 - STEP PROCESSOR PROCESSOR FILE Three types of neutral files are discussed: Drawing exchange files (DXF) IGES files STEP files CAD CAD SOFTWARE A OFTWARE B IGES/ POST PRE STEP PROCESSOR PROCESSOR FILE, Advanced Manufacturing Laboratory, Department of Indust

Computer-Aided Design (CAD)	0 SECTION 2 HEADER 9
Geometric data exchange	:
 Drawing exchange files/formats (DXF) is a CAD data file format developed by Autodesk for enabling data interoperability between AutoCAD and other programs. 	AcDbEntity 8 0 100 AcDbLine
 The basic organization of a DXF file is as follows: HEADER section CLASSES section TABLES section BLOCK section ENTITIES section OBJECTS section THUMBNAILIMAGE section END OF FILE 	IO LINE 5 12D ENDSEC
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10	eof

Geometric data exchange

- Drawing exchange files/formats (DXF) structures:
 - BLOCKS section This section contains Block Definition entities describing the entities comprising each Block in the drawing.
 - *ENTITIES* section This section contains the drawing entities, including any Block References.
 - OBJECTS section Contains the data that apply to nongraphical objects, used by AutoLISP and ObjectARX applications.
 - *THUMBNAILIMAGE section Contains the preview image for the DXF file.*





Automation (21541), Session # 10

									S	1
Geometric data	1H,,1H;,4HSI	OT,37H\$3	L\$DUA2:[]	GESLIB.	BDRAFT.B21]SLOT.	EGS;,		G	1
- Geometric adia	17HBravo3 Br							38,6,38,15,	G	2
exchange	4HSLOT, 1., 1,								G	3
6	31HD. A. Har	rod, Tel	L. 313/99	95-6333,2			1 Arbor,	MI,4,0;	G	4
Initial	116	1	0	1	0	0	0	0	1D	1
	116	1	5	1	0			_	0D	2
Graphic	116	2	0	1	0	0	0	0	1D	3
E dana a	116	1	5	1	0		0		0D	4 5
Exchange	100	3	0	1		0	0	0	1D 0D	5
Specification (IGES)	100 100	1	2	1	0	0	0	0	1D	7
Specification (IOLS)	100	1	2	1	0	0	0	0	0D	8
	110	5	0	1	0	0	0	0	1D	9
	110	1	3	1	0		•	0	OD	10
	110	6	ō	1	ŏ	0	0	0	1D	11
	110	1	3	1	ő			-	00	12
	116,0.,0.,0.	.0.0.0;	-	-	-				1P	1
	116,5.,0.,0.								3P	2
	100,0.,0.,0.		0.,-1.,0,	0;					5P	3
	100,0.,5.,0.								7P	4
	110,0.,-1.,0	.,5.,-1	.,0.,0,0;						9P	5
	110,0.,1.,0.	,5.,1.,0	0.,0,0;						11P	6
	S 1G	4D	12P	6					Т	1
										0

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):
 - The IGES committee was established in the year 1979.
 - The CAD/CAM Integrated Information Network (CIIN) of Boeing served as the preliminary basis of IGES.

- *Geometric data exchange*
 - Initial Graphic Exchange Specification (IGES):
 Start Section

The Start section is a human readable introduction to the file.

It is commonly described as a "prologue" to the IGES file.

This section contains information such as the names of the sending (source) and receiving (target) CADICAM systems, and a brief description of the product being converted

> Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):
 - Global Section

The Global section includes information that describe the preprocessor and information needed by the postprocessor to interpret the file.

- Characters used as delimiters between individual entries and between records (usually commas and semicolons respectively)
- The name of the IGES file itself, Vendor and software version of sending (source) system,
- Date and time of file generation,
- Model space scale,
- Model units,
- Minimum resolution and maximum coordinate values,
- Name of the author of IGES file

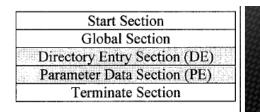
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Start Section
Global Section
Directory Entry Section (DE)
Parameter Data Section (PE)
Terminate Section

Start Section Global Section

Directory Entry Section (DE) Parameter Data Section (PE) Terminate Section

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):
 - Directory Entry Section (DE)
 - The DE section is a list of all the entities defined in the IGES file together with certain attributes associated with them.
 - The entry for each entity occupies two 80-character records which are divided into a total of twenty 8-character fields
 - The first and the eleventh (beginning of the second record of any given entity) fields contain the entity type number such as 100 for circle, 110 for lines, etc.
 - The second field contains a pointer to the parameter data entry for the entity in the PD section.


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):
 - Directory Entry Section (DE)

Start Section
Global Section
Directory Entry Section (DE)
Parameter Data Section (PE)
Terminate Section

Column	1-8	9-16	. 49-56	65-72	73-80
Line 1	Entity Type	Parameter Entry Pointer	Transformat -ion Matrix	Visible Entity Switch	Sequence Number
Line 2	Entity Type				Sequence Number

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):
 - Parameter Data Section (PE)
 - The PD section contains the actual data defining each entity listed in the DE section
 - A straight line entity is defined by the six coordinates of its two endpoints
 - Each entity has always two records in the DE section,
 - The number of records required for each entity in the PD section varies from one entity to another (the minimum is one record) and depends on the amount of data.
 - Parameter data are placed in free format in columns 1 through 64.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - Initial Graphic Exchange Specification (IGES):

Field	1	2 3 4	5 6	7 8	73-80
Circle	100	Z X Y (center of circle)	X ₁ Y ₁ (start point)	$\begin{array}{cc} X_2 & Y_2 \\ (end point) \end{array}$	Sequence Number
Line	110	$X_1 ext{ } Y_1 ext{ } Z_1$ (start point)	$\begin{array}{cc} X_2 & Y_2 \\ Z_2 \\ (end point) \end{array}$		Sequence Number

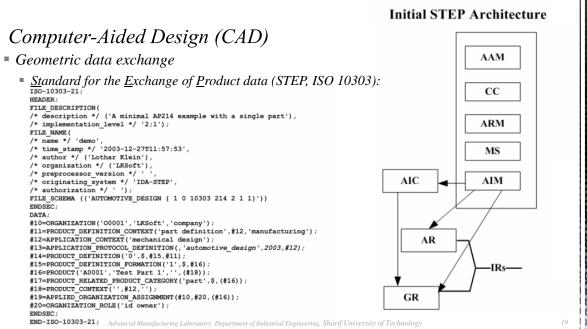
Termination Section

• The Terminate section contains a single record which specifies the number of records in each of the four preceding sections for checking purposes.

Start Section	
Global Section	
Directory Entry Section (I	DE)
Parameter Data Section (I	
Terminate Section	

Start Section
Global Section
Directory Entry Section (DE)
Parameter Data Section (PE)
Terminate Section

Homework : AT-G-07-#


- In this HW you will try the direct translation of geometric data related to your group format to a simple IGES format.
 - Given a simple .IGES file you should find the LINE (110) entities.
 - You should map the line data into your designed CIM database.
- The HW should be sent to *Fvalilai@Sharif.edu* till Monday, 5th of Khordad (May, 26th ,2014)
- Email subject: "AT-G-07-#"

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 10

Computer-Aided Design (CAD)

- Geometric data exchange
 - Standard for the Exchange of Product data (STEP, ISO 10303):
 - The STEP is the enabler for seamless exchange of product data which is critical to CAD/CAM/CAE systems.
 - STEP itself is the basis for Product Data Management System (PDM).
 - It covers border functionalities. It includes methods of representing all critical product specifications such as
 - Shape information,
 - Materials,
 - Tolerances,
 - Finishes and
 - Product structure.

Automation (21541), Session # 10