

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 11

Session Schedule

- Computer-Aided Design (CAD)
 - Geometric modeling
 - Geometric data exchange

- Geometric data exchange
 - The heart of any CAD model is the component database.

This includes

- The graphics entities like points, lines, arcs, circles etc. and the co-ordinate points, which define the location of these entities.
- This geometric data is used in all downstream applications of CAD, which include
 - Finite element modeling and analysis,
 - Process planning,
 - Estimation,
 - CNC programming,
 - Robot programming,
 - Programming of co-ordinate measuring machines,
 - ERP system programming and simulation.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 11

Computer-Aided Design (CAD)

- Geometric data exchange
 - A solution to the problem of direct translators is to use neutral files.
 - These neutral files will have standard formats and software packages can have pre-processors to convert drawing data to neutral file and postprocessors to convert neutral file data to drawing file.
 - STEP PROCESSOR PROCESSOR FILE Three types of neutral files are discussed: Drawing exchange files (DXF) IGES files STEP files CAD CAD SOFTWARE A OFTWARE B IGES/ POST PRE STEP PROCESSOR PROCESSOR FILE, Advanced Manufacturing Laboratory, Department of Indust

- Geometric data exchange
 - <u>Standard for the Exchange of Product data (STEP, ISO 10303):</u>
 - The STEP is the enabler for seamless exchange of product data which is critical to CAD/CAM/CAE systems.
 - STEP itself is the basis for Product Data Management System (PDM).
 - It covers border functionalities. It includes methods of representing all critical product specifications such as
 - Shape information,
 - Materials,
 - Tolerances,
 - Finishes and
 - Product structure.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 11

4/28/2014

Automation (21541). Session # 11

5

4/28/2014

6

• *Geometric data exchange*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology

- Geometric data exchange
 - <u>Standard for the Exchange of Product data</u> (STEP, ISO 10303):

STEP Data Specifications

Data Specifications

Application Protocols

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 11

Computer-Aided Design (CAD)

Geometric data exchange

Standard for the Exchange of Product data (STEP, ISO 10303):

Homework: AT-G-08-#

- In this HW you will try to analyze a simple example of STEP standard Integrated Resources (IRs):
 - Consider the following STEP file

Start from the "Cartesian_Point" entity and draw a simple Entity model till you get to a B-Rep model.

- The HW should be sent to <u>FValilai@sharif.edu</u> till Saturday, 10th of khordad (May, 31st, 2014)
- Email subject: "AT-G-08-#"

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 11