Session Schedule

- CIM hardware and software considerations
 - A brief case study for CIM database design
Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Automation:
 - set of all measures aiming at replacing human work through machines
 (e.g. automation is applied science)
 - the technology used for this purpose
 (e.g. this company has an automation department)

- Automation:
 - replacement of human work through machines
 (e.g. the automatisation of the textile factory caused uproar of the workers)
 - replacement of conscious activity by reflexes
 (e.g. drill of the sailors allows the automatisation of ship handling)

- Automation:
 - The use of computers and machines instead of people to do a job

CIM hardware and software considerations

- CIM equipment:
 - CNC machines
 - Computerized work centers
 - Robotic work cells
 - DNC/FMS systems
 - Work handling and tool handling devices
 - Storage devices
 - Sensors, shop floor data collection devices
 - Inspection machines
 - Computers, controllers
 - CAD/CAM systems, workstations / terminals, data entry terminals, bar code readers, RFID tags
 - Printers, plotters and other peripheral devices, modems, cables, connectors
CIM hardware and software considerations

- CIM software comprises computer programs like:
 - Management Information System; Database Management
 - Sales, Order Entry
 - Marketing
 - Finance
 - Analysis; Modeling and Design
 - Simulation
 - Inventory Control; Materials Handling
 - Monitoring; Shop Floor Data Collection
 - Process Planning
 - Manufacturing Facilities Planning; Production Control
 - Work Flow Automation
 - Quality Management

CIM Database management

- Varied tasks one might expect to accomplish in a CIM environment:
 - Designing assemblies and performing tolerance analysis on those assemblies.
 - Preparing production drawings of assemblies, individual parts, tooling, fixtures and other manufacturing facilities.
 - Preparing part lists and bill of materials (BOM).
 - Preparing process plans for individual part manufacture and assembly.
 - Programming CNC machines for processing complete parts (CAM).
 - Designing work cells and programming the movement of components in those cells using work handling devices like robots, conveyors, AGV’s/ RGV’s.
 - Preparing inspection programs including programs for CNC machines.
Third step:

- Theoretically plan the procedures which enable:
 - The storage of object related data (attributes)
 - The sort of data related to an array of objects (Tables, Primary keys)
 - The storage of relation among related objects (relational database, Foreign keys)
 - The retrieve operation of a definite object by means of its attributes (Select)
 - The modification/delete operation of a definite object by means of its attributes (Update/Delete)

Make your own CIM database !!
Provide a simple implementation regards to your theoretical activities in steps one to three:
- Define a simple discourse
- Use a programming language
- Define some simple objects in the selected discourse
- Define some simple attributes for selected objects
- Implement your theoretical procedures in step 3

The HW should be sent to FValilai@sharif.edu.
Email subject: “AT:G:01:”