

Automation (21-541)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session #4

Session Schedule

• CIM hardware and software considerations

A brief case study for CIM database design

Introduction to manufacturing automation and CIM (Computer Integrated Manufacturing)

- Automation:
 - set of all measures aiming at replacing human work through machines (e.g. automation is applied science)
 - the technology used for this purpose (e.g. this company has an automation department)

Automation:

- replacement of human work through machines (e.g. the automatisation of the textile factory caused uproar of the workers)
- replacement of conscious activity by reflexes (e.g. drill of the sailors allows the automatisation of ship handling)

Automation:

• The use of computers and machines instead of people to do a job

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541) Session #4

CIM hardware and software considerations

- CIM equipment:
 - CNC machines
 - Computerized work centers
 - Robotic work cells
 - DNC/FMS systems
 - Work handling and tool handling devices
 - Storage devices
 - Sensors, shop floor data collection devices
 - Inspection machines
 - Computers, controllers
 - CAD/CAM systems, workstations / terminals, data entry terminals, bar code readers, RFID tags
 - Printers, plotters and other peripheral devices, modems, cables, connectors

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session #4

CIM hardware and software considerations

- CIM software comprises computer programs like:
 - Management Information System; Database Management
 - Sales, Order Entry
 - Marketing
 - Finance
 - Analysis; Modeling and Design
 - Simulation
 - Inventory Control; Materials Handling
 - Monitoring; Shop Floor Data Collection
 - Process Planning
 - Manufacturing Facilities Planning; Production Control
 - Work Flow Automation
 - Quality Management

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 4

CIM Database management

- Varied tasks one might expect to accomplish in a CIM environment:
 - Designing assemblies and performing tolerance analysis on those assemblies.
 - Preparing production drawings of assemblies, individual parts, tooling, fixtures and other manufacturing facilities.
 - Preparing part lists and bill of materials (BOM).
 - Preparing process plans for individual part manufacture and assembly.
 - Programming CNC machines for processing complete parts (CAM).
 - Designing work cells and programming the movement of components in those cells using work handling devices like robots, conveyors, AGV's/RGV's.
 - Preparing inspection programs including programs for CNC machines.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 4

Make your own CIM database !!

• Third step:

- Theoretically plan the procedures which enable:
 - The storage of object related data (attributes)
 - The sort of data related to an array of objects (Tables, Primary keys)
 - The storage of relation among related objects (relational database, Foreign keys)
 - The retrieve operation of a definite object by means of its attributes (Select)
 - The modification/delete operation of a definite object by means of its attributes (Update/Delete)

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 4

Make your own CIM database !!

- Third step: (Continued ...)
 - Theoretically plan the procedures which enable:
 - The transfer of your data base from one computer to another (Back up operation)
 - The extract of information from an array objects (Information)
 - The extract of knowledge from a series of information (knowledge)

000001 < <header></header>	>					;}		100
 000002 DATABASEN	AME						;}	
 000003 DATABASEL	OCATION						;}	
 000004 DATABASEC	REATOR						;}	200
 000005 < <t>></t>	POINT				;}			200
 000006 < <t>></t>	LINE				;}			
 000007 << <a>>>	PCODE	000005			;}			200
 000008 < <a>>	PX		000005			;}		
 000009 << <a>>>	PY		000005			;}		200
 000010 < <a>>	PZ		000005			;}		
 000011 < <a>>	LCODE	000006			;}			2.22
 000012 << <a>>>	PSCODE	000006			;}			0.53
 000013 < <a>>	PFCODE	000006			;}			
 000014 < <k>></k>	PCODE	000007			;}			100
 000015 < <k>></k>	LCODE	000011			;}			200
 000016 < <f>></f>	STTPOINT	000012	000007		;)			00
 000017 < <f>></f>	FNSPOINT	000013	000007		;)			
 001001 < <data>></data>							;}	443
 001002 000002		TEST1				;}		4 4
 001003 000003		D:\TEST F	OLDER			;}		200
 001004 000004		OMID FAT	AHI			;}		24
 001005 000001		TEST1				;}		
 001006 000005		<< R OW>>				;}		200
 001007 000007		1			001006		;}	
 001008 000008		0			001006		<i>;</i> }	
 001009 000009		0			001006		<i>;</i> }	
 001010 000010		0			001006		<i>;</i> }	
 001011 000005		<< R OW>>				;}		
 001012 000007		2			001011		;]	
 001013 000008		1			001011		;)	
 001014 000009		1			001011		<i>;</i> }	
 001015 000010		1			001011		<i>;</i> }	
 001016 000006		<< R OW>>				;}		00
 001017 000011		1			001016		;}	0.02
 001018 000012		1			001016		;}	60
 001019 000013	Advanced Manufa	cturing L 2 boratory. D	epartment of Indus	trial Engineering, Sharif University of Techn	1010g\ 001016		;} 9	
			Automation (2154.					290
				.,,				

Homework: AT:G:01:#

- Provide a simple implementation regards to your theoretical activities in steps one to three:
 - Define a simple discourse
 - Use a programming language
 - Define some simple objects in the selected discourse
 - Define some simple attributes for selected objects
 - Implement your theoretical procedures in step 3
- The HW should be sent to <u>FValilai@sharif.edu.</u>
- *Email subject: "AT:G:01:#"*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Automation (21541), Session # 4