

CAD/CAM (21-342)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 6

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: FValilai@sharif.edu, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

Class time

Saturday- Monday	10:30-12:00
Course evaluation	
 Mid-term 	(25%)
 Final exam 	(40%)
 Quiz 	(5%)
Exercise	(30%)

Emad Abouel Na Ali K. Kamrani

Computer-Based Design and

Manufacturing

Manufacturing

Principles of

CAD/CAM/CAE

KUNWOO LEE

CAD/CAM/CII

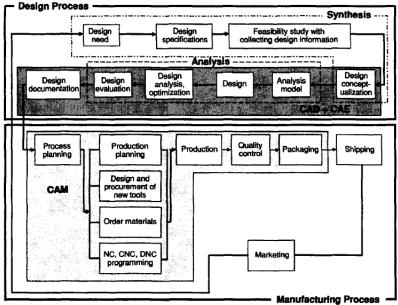
Course Description (Continued ...)

- Mid-term session:
 - Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30
- Final Exam:
 - Saturday: 24th Khordad 1393, 15:00 ~ 17:30
- Reference:
 - Lee, Kunwoo; "Principles of CAD/CAM/CAE systems", 1999, Addsion Wesley
 - Abouel Nasr, Emad; Kamrani, Ali K.; "Computer-Based Design and Manufacturing: An Information-Based Approach", 2007, Springer, New York
 - Benhabib, Beno; "Manufacturing: Design, Production, CAD/CAM, and Integration", 2003, Marcel Dekker Inc, New York
 - Radhakrishnan, P.; Subramanian, S.; Raju, V.; "CAD/CAM/CIM", 3rd edition, 2005, New age international (P) limited publishers, New York

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #6

Course Description (Continued..)

Contents:	
Introduction to CAD/CAM/CAE systems	(5 sessions)
Components of CAD/CAM/CAE systems	(2 sessions)
 Geometric modeling systems 	(3 sessions)
 Optimization in CAD 	(5 sessions)
 Rapid prototyping and manufacturing 	(3 sessions)
 Virtual engineering 	(2 sessions)
Product Life Cycle Cost Model	(2 sessions)
 Computer-Based Design and Features/Methodologies of Feature Representations 	(5 sessions)
Feature-Based Process Planning and Techniques	(3 sessions)
Collaborative Engineering	(2 sessions)

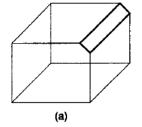

Course Description (Continued..)

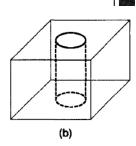
• Contents:

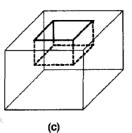
- Geometric modeling systems
 - Wireframe modeling systems
 - Surface modeling systems
 - Solid modeling systems
 - Non-manifold modeling systems
 - Assembly modeling systems

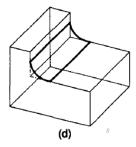
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #6

Introduction to CAD/CAM/CAE systems

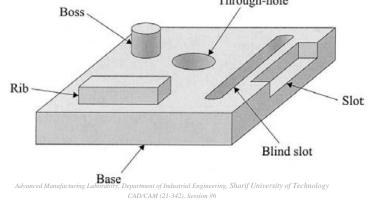



(3 sessions)


4


Geometric modeling systems

- Feature based modeling
 - Enables the designer to model solids by using familiar shape units.
 - " a hole of a certain size at a certain place"
 - " a chamfer of a certain size at a certain place"
 - Popular manufacturing features:
 - Hole
 - Fillet
 - Slot
 - Pocket
 - chamfer

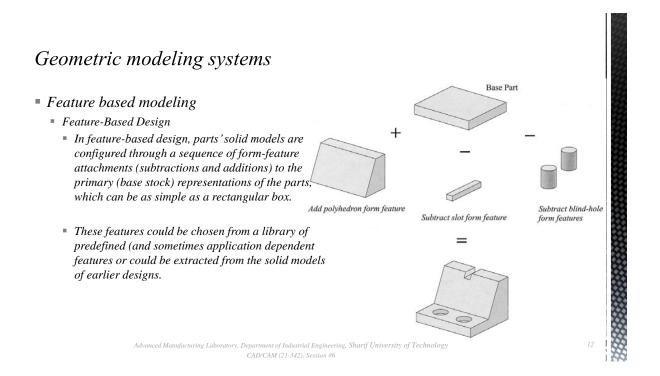


Advanced Manufacturing Laboratory, Department of Industrial Engineerin, CAD/CAM (21-342), Session #6

Geometric modeling systems

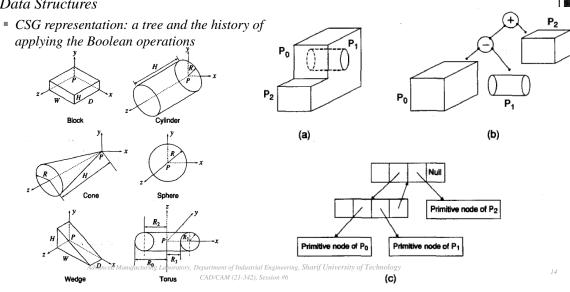
Feature based modeling

- Feature-Based Design
 - Features can be seen as specific geometric shapes on a part that can be associated with certain fabrication processes.
 Through-hole


- Feature based modeling
 - Feature-Based Design
 - Features have been commonly classified as
 - Form,
 - Material,
 - Precision,
 - and technological features.
 - It has been long advocated that if these features were highlighted during the modeling phase of a product's design process, in the subsequent
 - *production-planning phases,*

engineers could take advantage of this information in accessing historical data regarding the production of these features.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #6


Geometric modeling systems

- Feature based modeling
 - Feature-Based Design
 - The objective of design by features is :
 - To increase the efficiency of the designer during the geometric-modeling phase
 - To provide a bridge (mapping) to engineering-analysis and process-planning phases of product development.

- Data Structures
 - Trying to make a mathematical description of a solid geometry
 - CSG representation: a tree and the history of applying the Boolean operations
 - B-Rep: boundary information of a solid
 - Decomposition model: Aggregation of simple solids such as cubes

Data Structures

Geometric modeling systems • Data Structures

• CSG representation: a tree and the history of applying the Boolean operations

struct operator {

Suuc	i operato	" (
	int	op_type,	/* union, intersection or difference operator */	+ P ₂
		L_type;	/* left node type: 0=operator, 1=primitive */	
		R_type	/* right node type: 0=operator, 1=primitive */	
	void	*L_ptr;	/* left node */	
		R_ptr;	/ right node */	P ₀ P ₁
		p_ptr;	/ parent node */	
}				(a) (b)
struct	t primitiv	ve {		Nult
	int	prim_type;	/* type of primitive */	Primitive node of P2
	double	pos_x, pos_y, pos_	z; /* position of instance */	
	double	ori_x, ori_y, ori_z;	/* orientation of instance */	Primitive node of Po Primitive node of Po
	void	*attribute;	/* the value of dimensions of the primitive	
}				

Data Structures

- CSG representation: a tree and the history of applying the Boolean operations
 - It is simple and stores compact data
 - It always describe a valid solid
 - It can be easily converted
 - It supports the parametric modeling
 - It is limited by the defined Boolean operators (no lifting or other operator can be applied)
 - A great amount of computations is needed to discover the boundary information

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #6

Geometric modeling systems • Data Structures

- B-Rep: boundary information of a solid
 - The basic elements of the boundary are vertices, edges and faces
 - B-Rep needs to stores the abovementioned data and the interconnected information

Three tables for storing B-Rep

Face Table		Edg	ge Table	Vei	tex Table	V ₅
Face	Edges	Edge	Vertices	Vertex	Coordinates	F 4
F ₁	E_{1}, E_{5}, E_{6}	E ₁	V ₁ , V ₂	\mathbf{V}_{1}	x ₁ , y ₁ , z ₁	F_3 $/E_8$ \times E_8
F_2	E ₂ , E ₆ , E ₇	E_2	V ₂ , V ₃	V ₂	x ₂ , y ₂ , z ₂	
F_3	E ₃ , E ₇ , E ₈	E3	V ₃ , V ₄	V ₃	x ₃ , y ₃ , z ₃	E7 V4
F ₄	E_4, E_8, E_5	E4	V_4, V_1	V_4	x_4, y_4, z_4	
F ₅	E ₁ , E ₂ , E ₃ , E ₄	E ₅	V ₁ , V ₅	V ₅	x ₅ , y ₅ , z ₅	
		\mathbf{E}_{6}	V ₂ , V ₅	V_6	x ₆ , y ₆ , z ₆	
		E ₇	V ₃ , V ₅			F_2 F_5 V
		E8	V ₄ , V ₅			f University of Technology

Geometric modeling systems

- Data Structures
 - B-Rep: boundary information of a solid
 - Curved faces and edges are problems
 - External and internal boundaries for faces are problems
 - Number of the edges for faces may be different
 - Deriving the information among the tables may be difficult