CAD/CAM (21-342)
Advanced Manufacturing Laboratory
Department of Industrial Engineering
Sharif University of Technology

Session # 11

Course Description

- Instructor
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai

- Class time
 - Saturday- Monday 10:30-12:00

- Course evaluation
 - Mid-term (25%)
 - Final exam (40%)
 - Quiz (5%)
 - Exercise (30%)
Course Description (Continued ...)

Mid-term session:
- Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30

Final Exam:
- Saturday: 24th Khordad 1393, 15:00 ~ 17:30

Reference:
- Benhabib, Beno; “Manufacturing: Design, Production, CAD/CAM, and Integration”, 2003, Marcel Dekker Inc, New York

Contents:
- Introduction to CAD/CAM/CAE systems (5 sessions)
- Components of CAD/CAM/CAE systems (2 sessions)
- Geometric modeling systems (3 sessions)
- Optimization in CAD (5 sessions)
- Rapid prototyping and manufacturing (3 sessions)
- Virtual engineering (2 sessions)
- Product Life Cycle Cost Model (2 sessions)
- Computer-Based Design and Features/Methodologies of Feature Representations (5 sessions)
- Feature-Based Process Planning and Techniques (3 sessions)
- Collaborative Engineering (2 sessions)
Course Description (Continued..)

* Contents:
 * Rapid prototyping and manufacturing
 (3 sessions)
 * RP primitives
 * Application of RP

Introduction to CAD/CAM/CAE systems
Rapid prototyping and manufacturing

- **RP primitives**
 - Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data.
 - Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.
 - Alternatively, it is also called:
 - Layered manufacturing
 - 3D printing
 - Desktop manufacturing
 - Solid free form manufacturing

Rapid prototyping and manufacturing

- **RP primitives**
 - The process of RP consists of three steps:
 - Form the cross sections of the part to be manufactured
 - Lay the cross section layer by layer
 - Combine the layers
Rapid prototyping and manufacturing

- **RP**
 - **Stereo Lithography:**
 - In late 1970s and 1980s:
 - A photosensitive polymer that solidifies when exposed to a lightening source is maintained in liquid state
 - A platform as an elevator
 - The UV laser scans the polymer layer above the platform to solidify the polymer and give it the shape of the corresponding cross section
 - The platform is lowered in the polymer bath based on the layer thickness
Rapid prototyping and manufacturing

- **RP**
 - **Solid Ground Curing (SGC):**
 - The cross section of each layer is calculated from the geometric model of the pal and the desired thickness.
 - The optical mask is generated comforting to each section.
 - After leveling the platform is covered with a thin layer of the liquid photopolymer.
 - The mask is positioned over the surface of the liquid resin, the resin is exposed to high power UV lamp.
 - The residual liquid is removed from the work piece.
 - A layer of melted wax is spread over the work piece to full the voids.
 - The wax is solidified.
 - The layer surface is trimmed to the desire thickness.
 - At the end the wax is melted.