CAD/CAM (21-342)

Advanced Manufacturing Laboratory

Department of Industrial Engineering

Sharif University of Technology

Session # 15

Course Description

- Instructor
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai
- Class time

Saturday-	Mondon	10:30-	12.00
Saturaay-	Monaay	10:30-	17:00

• Course evaluation

Mid-term (25%)
 Final exam (40%)
 Quiz (5%)
 Exercise (30%)

Course Description (Continued ...)

- *Mid-term session:*
 - Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30
- Final Exam:
 - Saturday: 24th Khordad 1393, 15:00 ~ 17:30
- Reference:
 - Lee, Kunwoo; "Principles of CAD/CAM/CAE systems", 1999, Addsion Wesley
 - Abouel Nasr, Emad; Kamrani, Ali K.; "Computer-Based Design and Manufacturing: An Information-Based Approach", 2007, Springer, New York
 - Benhabib, Beno; "Manufacturing: Design, Production, CAD/CAM, and Integration", 2003, Marcel Dekker Inc, New York
 - Radhakrishnan, P.; Subramanian, S.; Raju, V.; "CAD/CAM/CIM", 3rd edition, 2005, New age international (P) limited publishers, New York

F. SERGENTIAN

S. NOW AGE INTENTIONAL PILL HILLS

NOW AGE INTENTIONAL PILL HILLS

3

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

Course Description (Continued..)

• Contents:

Comenia.				
■ Introduction to CAD/CAM/CAE systems	(5 sessions)			
■ Components of CAD/CAM/CAE systems	(2 sessions)			
■ Geometric modeling systems	(3 sessions)			
 Optimization in CAD 	(5 sessions)			
 Rapid prototyping and manufacturing 	(3 sessions)			
 Virtual engineering 	(2 sessions)			
Product Life Cycle Cost Model	(2 sessions)			
 Computer-Based Design and Features/Methodologies of Feature Representations 	(5 sessions)			
Feature-Based Process Planning and Techniques	(3 sessions)			
Collaborative Engineering	(2 sessions)			

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15 5

Course Description (Continued..)

- **Contents:**
 - Product Life Cycle Cost Model

(2 sessions)

- Cost Breakdown in Manufacturing Systems
- Computer-Aided Cost Estimating in Manufacturing

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

Introduction to CAD/CAM/CAE systems

7

■ Introduction

- Today's manufacturing environment should:
 - Increased product variety
 - Reduced product life cycle
 - Changed cost structures
 - Hardly estimate the costs and benefits of computer integrated manufacturing (CIM) technology.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

Product Life Cycle Cost Model

Introduction

- Today's manufacturing environment should:
 - Increased product variety
 - Reduced product life cycle
 - Design stage.
 - Manufacturing stage.
 - End-of-life stage

■ Introduction

- Today's manufacturing environment should:
 - Increased product variety
 - Reduced product life cycle
 - Changed cost structures
 - Manufacturing costs conventionally have been classified into three items:
 - Material
 - Labor
 - Overhead costs

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

Product Life Cycle Cost Model

■ Introduction

- Today's manufacturing environment should:
 - Increased product variety
 - Reduced product life cycle
 - Changed cost structures
 - Hardly estimate the costs and benefits of computer integrated manufacturing (CIM) technology.
 - The conventional investment appraisal techniques are invalid for a CIM environment.
 - CIM equipment is extremely flexible and it is hard to evaluate its capabilities and define its application.
 - Economic justifications are proper when a company is involved in replacing old equipment with new equipment.

- Product Life Cycle Cost Analysis
 - Total System Cost (C)

$$C = (C_r + C_i + C_o)$$

where

 $C_r = R&D \cos t$

 C_i = investment cost

 C_o = operations and maintenance cost

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Model

 $C_r = R&D \cos t$

Product Life Cycle Cost Analysis C_0 = operations and maintenance cost

 C_i = investment cost

■ Total System Cost (C) Advanced Research and Development (Cr)

$$C_r = (C_{rm} + C_{rr} + C_{re} + C_{rt} + C_{rd})$$

where

 C_{rm} = program management cost

 C_{rr} = advanced R&D cost

C_{re} = engineering design cost

 C_{rt} = equipment development and test cost

 C_{rd} = engineering data cost

$$C = (C_r + C_i + C_o)$$

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

- Total System Cost (C)
 - Advanced Research and Development (Cr)
 - Equipment Development and Test (Crt)

$$C_r = (C_{rm} + C_{rr} + C_{re} + C_{rt} + C_{rd})$$

$$C_{rt} = [C_{rdl} + C_{rdm} + \sum C_{rdt}^{i}]$$

where

C_{rdl} = cost of prototype fabrication and assembly labor

 $C_{rdm} = cost of prototype material$

 $C_{rdti} = cost of test operations and support associated with specific test i$

 C_{rm} = program management cost N = number of identifiable tests

 C_{rr} = advanced R&D cost

 C_{re} = engineering design cost

 C_{rt} = equipment development and test cost

 C_{rd} = engineering data cost

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Model where

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

- Product Life Cycle Cost Analysis
 - Total System Cost (C)
 - Investment (Ci)

$$C_i = (C_{im} + C_{ic} + C_{il})$$

where

C_{im} = system/equipment manufacturing cost

 C_{ic} = system construction cost

 $C_{il} = cost of initial support$

$$C = (C_r + C_i + C_o)$$

- Product Life Cycle Cost Analysis
 - Total System Cost (C)
 - Investment (Ci)
 - Manufacturing (Cim)

$$C_i = (C_{im} + C_{ic} + C_{il})$$

where

C_{im} = system/equipment manufacturing cost

 C_{ic} = system construction cost

 $C_{il} = cost of initial support$

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

$$C_{im} = (C_{in} + C_{ir})$$

where

Cin = nonrecurring manufacturing cos C_{ir} = recurring manufacturing cost

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Model

- Product Life Cycle Cost Analysis
 - Total System Cost (C)
 - Investment (Ci)
 - Manufacturing (Cim)

$$C_r = R&D \cos t$$

 C_i = investment cost

 C_0 = operations and maintenance cost

$$C_i = (C_{im} + C_{ic} + C_{il})$$

$$C_{in} = [C_{inm} + C_{int} + C_{ina} + C_{inp} + \sum C_{ing} + \sum C_{ins}]$$

C_{int} = tools and factory test equipment cost (excluding capital equipment)

where

C_{im} = system/equipment manufacturing cost

 C_{ic} = system construction cost

Cil = cost of initial support

$$C_{im} = (C_{in} + C_{ir})$$

C_{ina} = quality assurance cost Cinp = manufacturing management cost

C_{inin} = manufacturing engineering cost

 $C_{inq} = cost of qualification test i$

C_{ina} = cost of production sampling test j

N = number of individual tests

where

where

 C_{in} = nonrecurring manufacturing cost

 C_{ir} = recurring manufacturing cost

CAD/CAM (21-342), Session #15

$$C = (C_r + C_i + C_o)$$

- Product Life Cycle Cost Analysis
 - Total System Cost (C)
 - Investment (Ci)
 - Manufacturing (Cim)

$$C_{ir} = [C_{ire} + C_{irl} + C_{irm} + C_{iri} + C_{irt}]$$

where

 C_{ire} = recurring manufacturing engineering support cost

 C_{irl} = production fabrication and assembly labor cost

C_{irm} = production material and inventory cost

 C_{iri} = inspection and test cost

C_{irt} = packing and initial transportation cost

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

$$C_i = (C_{im} + C_{ic} + C_{il})$$

where

C_{im} = system/equipment manufacturing cost

 C_{ic} = system construction cost

 $C_{il} = cost of initial support$

$$C_{im} = (C_{in} + C_{ir})$$

where

C_{in} = nonrecurring manufacturing cost

C_{ir} = recurring manufacturing cost

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Model when

- Product Life Cycle Cost Analysis
 - Total System Cost (C)
 - Investment (Ci)
 - Construction Cost (Cic)

$$C_{ic} = (C_{icp} + C_{ict} + C_{ico} + C_{icm})$$

where

C_{icp} = manufacturing facilities cost

 C_{ict} = test facilities cost

C_{ico} = operational facilities acquisition cost

 C_{iem} = maintenance facilities acquisition cost

$$C = (C_r + C_1 + C_0)$$

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

$$C_i = (C_{im} + C_{ic} + C_{il})$$

where

C_{im} = system/equipment manufacturing cost

 C_{ic} = system construction cost

 $C_{il} = cost of initial support$

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Analysis

■ Total System Cost (C)

Investment (Ci)

Initial Logistic Support Cost (CH)

 $C_r = R&D \cos t$

 C_i = investment cost

 C_0 = operations and maintenance cost

C_{im} = system/equipment manufacturing cost

$$C_i = (C_{im} + C_{ic} + C_{il})$$

 C_{ic} = system construction cost

C_{il} = cost of initial support

 $C_{il} = (C_{ilm} + C_{ilp} + C_{ils} + C_{ili} + C_{ild} + C_{ilt} + C_{ilx} + C_{ily})^{W}$

where

C_{ilm} = logistic program management cost

C_{ilp} = cost of provisioning

 C_{ils} = initial spare/repair material cost

C_{ili} = initial inventory management cost C_{ild} = cost of technical data preparation

 C_{ilt} = cost of initial training and training equipment

 C_{ilx} = acquisition cost of operational test and support equipment

Cily = initial transportation and handling cost

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #15

$$C = (C_r + C_i + C_o)$$

Product Life Cycle Cost Model where

Product Life Cycle Cost Analysis

■ Total System Cost (C)

Operator Personnel Cost (Co)

$$C_r = R&D \cos t$$

 C_i = investment cost

 C_o = operations and maintenance cost

$$Co = (C_{oo} + C_{om} + C_{on} + C_{on})$$

where

 C_{oo} = cost of system/equipment life cycle operations

C_{om} = cost of system/equipment life cycle maintenance

Con = cost of system/equipment modifications

 $C_{op} = \cos t$ of system/equipment phase-out and disposal