Course Description

- **Instructor**
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai

- **Class time**
 - Saturday- Monday 10:30-12:00

- **Course evaluation**
 - Mid-term (25%)
 - Final exam (40%)
 - Quiz (5%)
 - Exercise (30%)
Course Description (Continued ...)

- Mid-term session:
 - Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30
- Final Exam:
 - Saturday: 24th Khordad 1393, 15:00 ~ 17:30
- Reference:
 - Benhabib, Beno; “Manufacturing: Design, Production, CAD/CAM, and Integration”, 2003, Marcel Dekker Inc, New York

Course Description (Continued.)

- Contents:
 - Introduction to CAD/CAM/CAE systems (5 sessions)
 - Components of CAD/CAM/CAE systems (2 sessions)
 - Geometric modeling systems (3 sessions)
 - Optimization in CAD (5 sessions)
 - Rapid prototyping and manufacturing (3 sessions)
 - Virtual engineering (2 sessions)
 - Product Life Cycle Cost Model (2 sessions)
 - Computer-Based Design and Features/Methodologies of Feature Representations (5 sessions)
 - Feature-Based Process Planning and Techniques (3 sessions)
 - Collaborative Engineering (2 sessions)
Course Description (Continued..)

* Contents:
 * Product Life Cycle Cost Model (2 sessions)
 * Cost Breakdown in Manufacturing Systems
 * Computer-Aided Cost Estimating in Manufacturing

Introduction to CAD/CAM/CAE systems
Product Life Cycle Cost Model

- **Computer-Aided Cost Estimating in Manufacturing**
 - Cost estimating is the mission of determining and evaluating the costs involved in an engineering product or a system using scientific and engineering laws and methods.
 - The area of engineering practice where engineering judgment and experience are utilized in the application of scientific principles and techniques to the problems of cost estimating, cost control and profitability.
 - Classifications for cost estimating:
 - Screening estimate
 - Budget estimate
 - Definitive estimate

- **Objective of Cost Estimating:**
 - Assist in Submitting Bids
 - Revise Quotations
 - Assist in Evaluating Alternatives
 - Control of Manufacturing Expenses
 - Assist in Make or Buy Decisions
 - Establish Ground for a Selling Price
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - The Opinion Estimates Method
 - The Conference Estimating Method
 - The Comparison Method
 - The Unit Estimate Methods
 - The Cost and Time Relationship Method
 - The Power Law and Sizing Model Method
 - Probabilistic Approaches
 - Statistical Methods
 - Simulation
 - The Factor Method
 - The Detailed Computerized Method

\[C_2 (D_2) \leq C_1 (D_1) \]

\[C_3 (D_3) \leq C_1 (D_1) \leq C_2 (D_2) \]
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - The Unit Estimate Methods

\[C_u = \sum C_i / U_i \]

where

- \(C_u \) = average cost per unit of design \(i \)
- \(C_i \) = dollar value of design \(i \)
- \(U_i \) = unit of design \(i \)

Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - The Cost and Time Relationship Method
 - The Power Law and Sizing Model Method

\[C = C_j (Q_j / Q_i)^m \]

where

- \(C \) = cost value for design of size \(Q_i \)
- \(C_j \) = known cost of design with size \(Q_j \)
- \(Q_i, Q_j \) = design sizes
- \(m \) = correlating exponent, \(m \) within \([0, 1]\).
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - Probabilistic Approaches

\[C(i) = \{ p \cdot x_{ij} \} \]

where

- \(C(i) \) = expected value of the cost of design \(i \)
- \(P \) = probability that \(x \) takes on a value \(x \)
- \(x_{ij} \) = design event

Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - Statistical Methods
 - Estimating by confidence intervals
 - Estimating by tolerance intervals
 - Estimating by prediction intervals
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - Simulation
 - The Factor Method

\[
C = \left(C + \sum i f_i \cdot C_e \right) (f_i + 1)
\]

where
- \(C\) = estimated value of project
- \(C_e\) = cost of major equipment
- \(f_i\) = factor for estimating capital (buildings, equipment, etc.)
- \(f_i\) = factor for estimating of indirect cost
- \(i\) = factor index

The factors \(f_i\) and \(f_i\) are determined by historical data, experience, or policy.

Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - The Detailed Computerized Method
 - Computerized cost estimating takes advantage of the digital computer to automate the detailed manual cost estimating method.

- It is required that these estimates fall within an acceptable range; the need for accuracy is evident.

- Estimating errors can be categorized as controllable and uncontrollable errors.
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - The Detailed Computerized Method
 - Estimating errors can be categorized as controllable and uncontrollable errors.
 - Controllable errors may be caused by:
 - Failure to develop detailed data necessary for the cost estimate
 - Errors in interpreting information
 - Making wrong assumptions
 - Use of poorly documented data
 - Failure to spend the time necessary for accurate estimations
 - Lack of experience

- Uncontrollable errors are usually due to:
 - Unpredictable change in equipment
 - Unexpected conditions such as fires, storms, and industrial accidents Labor strike
 - Decline in productivity levels due to employee attitudes and low morale
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Methods of Cost Estimating
 - Cost estimate is the summation of various costs involved in the estimation of cost for a product, project, or a system.
 - These costs are classified into two groups:
 - Direct costs
 - Direct material: Materials that are an integral part of the finished product
 - Direct labor: Costs that can be traceable directly to the making of the product
 - Indirect costs
 - Manufacturing overhead: All manufacturing costs except direct material and labor costs
 - Indirect materials
 - Administrative overhead

- Computer-Aided Cost Estimating (CACE) is the use of computers to estimate costs of products, projects, or systems.

- CACE is an important tool to:
 - Develop cost estimates in shorter time.
 - Improve estimate accuracy by minimizing the human interface.
 - Improve cost data availability and security.
 - Evaluate more alternatives.
 - Improve management morale.
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
 - Structure of a Computer-Assisted Cost Estimating System
 - Costs beyond the manufacturing stage include the costs of engineering, marketing, and administrative-related activities:
 - Material cost:
 - Material is defined as substance being transformed or used in a manufacturing transformation. Materials are classified as:
 - 1. Raw materials
 - 2. Commercial products
 - 3. Subcontract products
 - 4. Inter-department transfer products
 - Labor Cost:
 - Labor cost estimating constitutes the second part of the direct cost. This cost is important because of the extensive attention it gets from management, government and researchers
 - 1. Identify the operation.
 - 2. Determine the labor time.
 - 3. Identify hourly rates.
 - 4. Determine the labor overhead rate.
 - 5. Determine the cost of fringe benefits.
 - 6. Tabulate the total cost of labors.
Product Life Cycle Cost Model

- Computer-Aided Cost Estimating in Manufacturing
- Structure of a Computer-Assisted Cost Estimating System
- Costs beyond the manufacturing stage include the costs of engineering, marketing, and administrative-related activities:
 - Machinery and Tools Cost:
 - Tools can be classified as hard or soft tools. Hard tools are those that are designed and manufactured specifically for a certain manufacturing operation. On the other hand, soft tools are conventionally used in common manufacturing operations.
 - 1. To determine the investment necessary for tools within a time frame during the planning phase.
 - 2. To evaluate alternative tooling combinations and select the combination incurring the least cost.

Operation Cost:
- An operation involves material, labor, and equipment.
- The estimator must have the necessary cost estimating data in the form of trade books, handbooks, and various data sources about the operations involved in the design.
- 1. Part design
- 2. Production plans
- 3. Material specifications
- 4. Tooling specification
- 5. Standard time sheets
Product Life Cycle Cost Model

* Computer-Aided Cost Estimating in Manufacturing
 * Structure of a Computer-Assisted Cost Estimating System
 * Costs beyond the manufacturing stage include the costs of engineering, marketing, and administrative-related activities:
 * Overhead Cost:
 * Overhead cost in present cost accounting practice is the portion of total cost that cannot be directly traced to particular operations, products, or projects.
 * The problem with allocating overhead charges is that these costs often exist even if the product is not produced.
 * Overhead charges may be determined in different ways including:
 1. Overhead as a ratio of direct labor dollars
 2. Overhead as a ratio of direct labor hours
 3. Overhead as a ratio of prime cost