

CAD/CAM (21-342)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 18

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: FValilai@sharif.edu, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

Class time

Saturday- Monday	10:30-12:00
Course evaluation	
 Mid-term 	(25%)
 Final exam 	(40%)
 Quiz 	(5%)
Exercise	(30%)

Emad Abouel Na Ali K. Kamrani

Computer-Based Design and

Manufacturing

Manufacturing

Principles of

CAD/CAM/CAE

KUNWOO LEE

CAD/CAM/CII

Course Description (Continued ...)

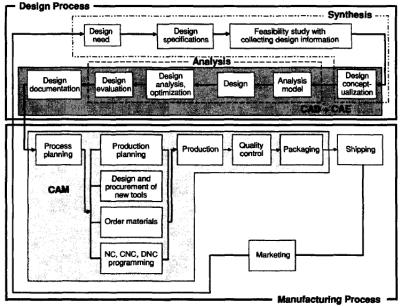
- Mid-term session:
 - Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30
- Final Exam:
 - Saturday: 24th Khordad 1393, 15:00 ~ 17:30
- Reference:
 - Lee, Kunwoo; "Principles of CAD/CAM/CAE systems", 1999, Addsion Wesley
 - Abouel Nasr, Emad; Kamrani, Ali K.; "Computer-Based Design and Manufacturing: An Information-Based Approach", 2007, Springer, New York
 - Benhabib, Beno; "Manufacturing: Design, Production, CAD/CAM, and Integration", 2003, Marcel Dekker Inc, New York
 - Radhakrishnan, P.; Subramanian, S.; Raju, V.; "CAD/CAM/CIM", 3rd edition, 2005, New age international (P) limited publishers, New York

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #18

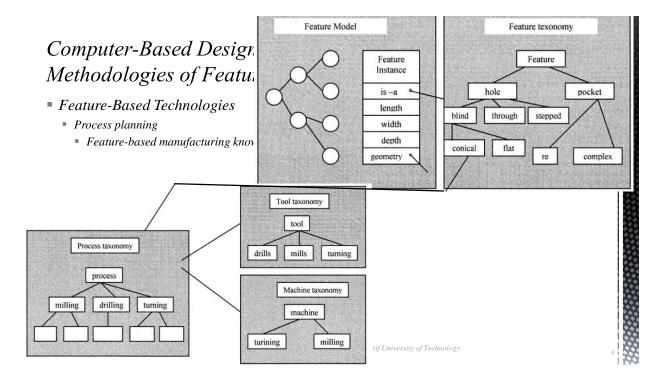
Course Description (Continued..)

Contents:	
 Introduction to CAD/CAM/CAE systems 	(5 sessions)
 Components of CAD/CAM/CAE systems 	(2 sessions)
 Geometric modeling systems 	(3 sessions)
 Optimization in CAD 	(5 sessions)
 Rapid prototyping and manufacturing 	(3 sessions)
 Virtual engineering 	(2 sessions)
Product Life Cycle Cost Model	(2 sessions)
Computer-Based Design and Features/Methodologies of Feature Representations	(5 sessions)
Feature-Based Process Planning and Techniques	(3 sessions)
Collaborative Engineering	(2 sessions)

Course Description (Continued..)


Contents:

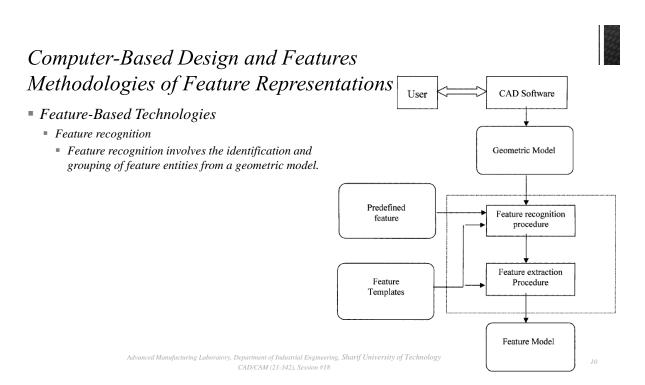
Computer-Based Design and Features/Methodologies of Feature Representations


- Feature-Based Technologies
- The New Methodology Objectives
- Variant Process Planning (VPP)
- Generative Process Planning (GPP)
- Assembly Planning

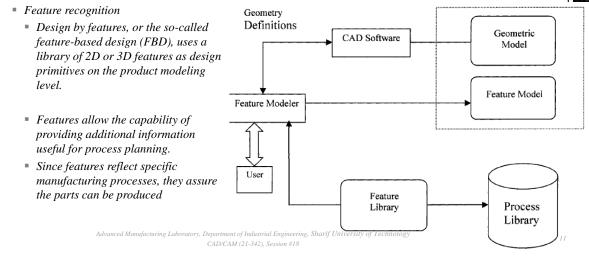
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #18

Introduction to CAD/CAM/CAE systems

(5 sessions)



- Feature-Based Technologies
 - Process planning
 - Generative Process Planning
 - In the generative process planning (GPP) approach, the planning system seeks to synthesize the process plan directly
 - For machine-designed objects, the distinctive approach is to perform the planning on the basis of a feature by feature methodology by retrieving candidate processes from

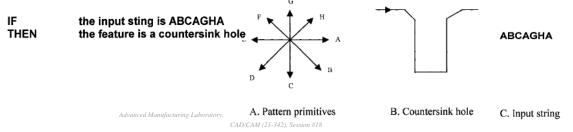

the manufacturing knowledge repository,

selecting the practical processes on the basis of geometric and manufacturing information of the designed objects,

and merging the selected processes in a proper sequence.

Feature-Based Technologies

Feature-Based Technologies


- Feature Recognition Techniques
- The feature recognition algorithms can be classified by their approaches to the problems as follows:
 - 1. The syntactic pattern recognition approach
 - 2. Logic-based approach
 - 3. Graph-based approach
 - 4. Expert system/artificial intelligence approach
 - 5. Volume decomposition and composition approach
 - 6. 3D feature recognition from 2D features approach

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CAD/CAM (21-342), Session #18

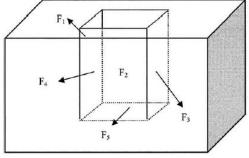
Computer-Based Design and Features Methodologies of Feature Representations

Feature-Based Technologies

- Feature Recognition Techniques
- The feature recognition algorithms can be classified by their approaches to the problems as follows:
 - 1. The syntactic pattern recognition approach
 - The syntactic pattern recognition approach uses the semantic primitives for part analysis.
 - The main components of the syntactic pattern recognition method are an input string, a pattern grammar, and a parser.

Feature-Based Technologies

- Feature Recognition Techniques
- The feature recognition algorithms can be classified by their approaches to the problems as follows:
 - 2. Logic-based approach
 - The logic rules are used with the B-rep representation modeling and the CSG representation modeling approaches for feature recognition.
 - Each feature can be recognized by a separate rule.
 face F₁ is adjacent to face F₂ and
- IF


face F_2 is adjacent to face F_3 and face F_3 is adjacent to face F_4 and

face F_5 is adjacent to faces F_1 F_2 F_3 F_4 and angle between F_1 and F_2 is < 180 (concave),

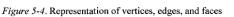
and

THEN

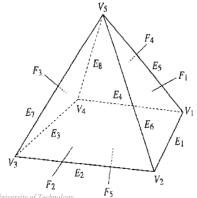
angle between F_3 and F_4 is < 180 (concave) faces F_1 , F_2 , F_3 , F_4 , and F_5 form a pocket feature

Computer-Based Design and Features Methodologies of Feature Representations

Feature-Based Technologies


- Feature Recognition Techniques
- The feature recognition algorithms can be classified by their approaches to the problems as follows:
 - 2. Logic-based approach
 - The logic rules are used with the B-rep representation modeling and the CSG representation modeling approaches for feature recognition.
 - Each feature can be recognized by a separate rule.

IF the Boolean operation is Subtraction, and the dimensions of the subtracted solid primitive are less than the solid model and the subtracted solid primitive is a cylinder THEN the feature is a hole


Feature-Based Technologies

- Feature Recognition Techniques
- The feature recognition algorithms can be classified by their approaches to the problems as follows:
 - 3. Graph-based approach

	\mathbf{F}_1	F ₂	F ₃	F4	F5
F ₁	0	1	1	1	1
F ₂	1	0	1	1	1
F ₃	1	1	0	1	1
F ₄	1	1	1	0	1
F ₅	1	1	1	1	0

