Course Description

- **Instructor**
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai

- **Class time**
 - Saturday- Monday 10:30-12:00

- **Course evaluation**
 - **Mid-term** (25%)
 - **Final exam** (40%)
 - **Quiz** (5%)
 - **Exercise** (30%)
Course Description (Continued...)

- **Mid-term session:**
 - Monday: 8th Ordibehesht 1393, 10:30 ~ 12:30

- **Final Exam:**
 - Saturday: 24th Khordad 1393, 15:00 ~ 17:30

- **Reference:**
 - Benhabib, Beno; “Manufacturing: Design, Production, CAD/CAM, and Integration”, 2003, Marcel Dekker Inc, New York

Course Description (Continued...)

- **Contents:**
 - Introduction to CAD/CAM/CAE systems (5 sessions)
 - Components of CAD/CAM/CAE systems (2 sessions)
 - Geometric modeling systems (3 sessions)
 - Optimization in CAD (5 sessions)
 - Rapid prototyping and manufacturing (3 sessions)
 - Virtual engineering (2 sessions)
 - Product Life Cycle Cost Model (2 sessions)
 - Computer-Based Design and Features/Methodologies of Feature Representations (5 sessions)
 - Feature-Based Process Planning and Techniques (3 sessions)
 - Collaborative Engineering (2 sessions)
Course Description (Continued..)

* Contents:
 * Geometric modeling systems (3 sessions)
 * Wireframe modeling systems
 * Surface modeling systems
 * Solid modeling systems
 * Non-manifold modeling systems
 * Assembly modeling systems

Introduction to CAD/CAM/CAE systems
Geometric modeling systems

- **Feature based modeling**
 - Enables the designer to model solids by using familiar shape units.
 - “a hole of a certain size at a certain place”
 - “a chamfer of a certain size at a certain place”

- **Popular manufacturing features:**
 - Hole
 - Fillet
 - Slot
 - Pocket
 - Chamfer

Geometric modeling systems

- **Feature based modeling**
 - **Feature-Based Design**
 - Features can be seen as specific geometric shapes on a part that can be associated with certain fabrication processes.
Geometric modeling systems

* Feature based modeling
 * Feature-Based Design
 * Features have been commonly classified as
 * Form,
 * Material,
 * Precision,
 * and technological features.

 * It has been long advocated that if these features were highlighted during the modeling phase of a product’s design process, in the subsequent production-planning phases, engineers could take advantage of this information in accessing historical data regarding the production of these features.

Geometric modeling systems

* Feature based modeling
 * Feature-Based Design
 * The objective of design by features is:
 * To increase the efficiency of the designer during the geometric-modeling phase

 * To provide a bridge (mapping) to engineering-analysis and process-planning phases of product development.
Geometric modeling systems

- Feature based modeling
 - Feature-Based Design
 - In feature-based design, parts’ solid models are configured through a sequence of form-feature attachments (subtractions and additions) to the primary (base stock) representations of the parts, which can be as simple as a rectangular box.
 - These features could be chosen from a library of predefined (and sometimes application dependent) features or could be extracted from the solid models of earlier designs.

Geometric modeling systems

- Data Structures
 - Trying to make a mathematical description of a solid geometry
 - CSG representation: a tree and the history of applying the Boolean operations
 - B-Rep: boundary information of a solid
 - Decomposition model: Aggregation of simple solids such as cubes
Geometric modeling systems

Data Structures

CSG representation: a tree and the history of applying the Boolean operations

```c
struct operator {
    int  op_type; /* union, intersection or difference operator */
    int  L_type; /* left node type: 0=operator, 1=primitive */
    int  R_type; /* right node type: 0=operator, 1=primitive */
    void *L_ptr; /* left node */
    void *R_ptr; /* right node */
    void *p_ptr; /* parent node */
}

struct primitive {
    int  prim_type; /* type of primitive */
    double pos_x, pos_y, pos_z; /* position of instance */
    double ori_x, ori_y, ori_z; /* orientation of instance */
    void *attribute; /* the value of dimensions of the primitive */
}
```

(a) [Diagram of CSG representation]
(b) [Diagram of CSG representation]
(c) [Diagram of CSG representation]
Geometric modeling systems

- Data Structures
 - CSG representation: a tree and the history of applying the Boolean operations
 - It is simple and stores compact data
 - It always describe a valid solid
 - It can be easily converted
 - It supports the parametric modeling
 - It is limited by the defined Boolean operators (no lifting or other operator can be applied)
 - A great amount of computations is needed to discover the boundary information

Geometric modeling systems
- Data Structures
 - B-Rep: boundary information of a solid
 - The basic elements of the boundary are vertices, edges and faces
 - B-Rep needs to stores the abovementioned data and the interconnected information

Three tables for storing B-Rep

<table>
<thead>
<tr>
<th>Face</th>
<th>Edges</th>
<th>Edge</th>
<th>Vertices</th>
<th>Vertex</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>E₁, E₂, E₆</td>
<td>E₁</td>
<td>V₁, V₂</td>
<td>V₁</td>
<td>x₁, y₁, z₁</td>
</tr>
<tr>
<td>F₂</td>
<td>E₂, E₆, E₇</td>
<td>E₂</td>
<td>V₂, V₃</td>
<td>V₂</td>
<td>x₂, y₂, z₂</td>
</tr>
<tr>
<td>F₃</td>
<td>E₃, E₇, E₈</td>
<td>E₃</td>
<td>V₃, V₄</td>
<td>V₃</td>
<td>x₃, y₃, z₃</td>
</tr>
<tr>
<td>F₄</td>
<td>E₄, E₈, E₅</td>
<td>E₄</td>
<td>V₄, V₁</td>
<td>V₄</td>
<td>x₄, y₄, z₄</td>
</tr>
<tr>
<td>F₅</td>
<td>E₅, E₆, E₄</td>
<td>E₅</td>
<td>V₁, V₅</td>
<td>V₅</td>
<td>x₅, y₅, z₅</td>
</tr>
<tr>
<td>F₆</td>
<td>E₆, V₁, V₃</td>
<td>E₆</td>
<td>V₂, V₅</td>
<td>V₆</td>
<td>x₆, y₆, z₆</td>
</tr>
<tr>
<td>F₇</td>
<td>E₇, V₃, V₅</td>
<td>E₇</td>
<td>V₄, V₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₈</td>
<td>E₈, V₄, V₅</td>
<td>E₈</td>
<td>V₄, V₅</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geometric modeling systems

- **Data Structures**
 - **B-Rep**: boundary information of a solid
 - Curved faces and edges are problems
 - External and internal boundaries for faces are problems
 - Number of the edges for faces may be different
 - Deriving the information among the tables may be difficult