

CIM (21-548)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session #4

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: FValilai@sharif.edu, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

Class time

 Sunday-Tuesday 	09:00-10:30
Course evaluation	
 Mid-term 	(30%)

Final exam	(50%)
• Quiz	(5%)
Exercise	(15%)

Course Description (Continued ...)

- *Mid-term session:*
 - *Sunday: 16th Azar 1393, 09:00 ~ 10:30*
- Final Exam:
 - Tuesday: 30th Dey 1393, 15:00 ~ 17:30
- *Reference*:
 - Schaefer, D., Cloud-based Design and Manufacturing (CBDM): A Service-Oriented Product Development Paradigm for the 21st Century, . London: Springer, 2014
 - Koren, Y., "The Global Manufacturing Revolution", Wiley, 2010
 - Nasr, A., "Computer-Based Design and Manufacturing An Information-Based Approach", Springer, 2007
 - Mitchell, F.H., "CIM Systems: An Introduction to Computer-Integrated Manufacturing", Prentice Hall College Div; 1St Edition edition (January 1991), ISBN: 978-0131332997

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of CIM (21548), Session # 4

Course Description (Continued..)

Contents:	
 Globalization and Manufacturing Paradigms 	(8 sessions)
System Concepts	(3 sessions)
• Evolution of Manufacturing systems	(2 sessions)
Manufacturing System Design	(4 sessions)
Manufacturing Equipment Design	(3 sessions)
 Information flow in Manufacturing Systems 	(4 sessions)
Product design and Manufacturing System	(3 sessions)
Manufacturing System Implementation	(5 sessions)
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 4	5

Course Description (Continued..)

- Contents:
 - System Concepts
 - Open System Concepts
 - Application to the manufacturing systems
 - Developing models of manufacturing systems

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session #4

System Concepts

- The Global manufacturing revolution
 - Manufacturing organizations are faced with the need to optimize the way in which they function in order to achieve the best possible performance within necessary constraints.
 - Many of the efforts in this direction are being carried forth under the banner of Computer-Integrated Manufacturing (CIM).
 - *CIM is not a product that can be purchased and installed.*
 - *CIM is a way of thinking about and solving problems.*
 - The emphasis is on understanding how to create effective manufacturing enterprises.

(3 sessions)

• The CIM revolution

- In most systems of interest, the system design will require an integrated information flow, which, in tum, depends on computer networks, thus giving rise to the CIM label.
- However, these aspects of system design are typically a necessary but not sufficient contribution to ward satisfying performance objectives.
- There are many other important concerns.
 - The overall system must be rationalized, requiring that the work flow, organizational structure, and management methods must be redesigned to obtain performance objectives.
 - The entire meaning of product design must be assessed and modified as necessary to optimize system performance.
 - The most appropriate use of technology can then be selected within this context.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 4

System Concepts

- The CIM revolution
 - *CIM is thus taken here to involve the design or redesign of an entire manufacturing enterprise in which all aspects of the system work together effectively.*
 - In most cases of interest,
 - Integrated information flow,
 - The widespread application of computers, and
 - *High levels of automation result from such design efforts.*

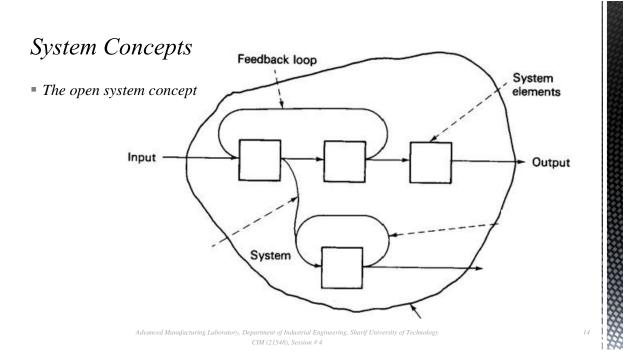
• The CIM revolution

- The advantages of conversion to CIM-oriented operations for five companies were found as:
 - Reduction in engineering design cost
 - Reduction in overall lead time
 - Increase in product quality
 - Increase in capability of engineers
 - Increase in productivity of production operations
 - Increase in productivity of capital equipment
 - Reduction in work-in- progress
 - Reduction in personnel costs

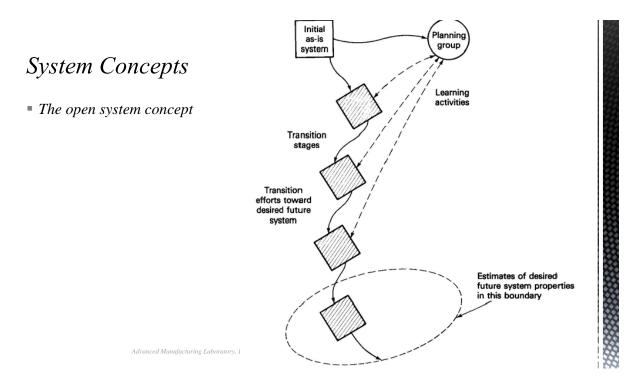
25-30 percent 30-60 percent 2-5 times 3-35 times 40-70 percent 2-3 times 30-60 percent 5-20 percent

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 4

System Concepts


- The CIM revolution
 - A typical manufacturing enterprise is a complex organization that depends on and interacts with a wide range of external organizations and activities.
 - Thus, managers of such enterprises are faced with difficult problem-solving situations as they attempt to optimize performance.
 - In order to solve a problem, it is necessary to develop a description or model of the features of the problem and to engage in activity that will produce a solution.

- The open system concept
 - In order to frame the nature of the problems facing enterprise managers, it is useful to draw on open system concepts for insight into the problem at hand.
 - The open system approach to understanding can provide concepts and definitions that will be useful throughout the problem-solving effort.
 - The manufacturing enterprise of interest is considered to be an open system. The enterprise is assumed to function in an environment.
 - *The manufacturing system and the environment interact together in many complex relationships.*


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 4

System Concepts

- The open system concept
 - Open system theory emphasizes the close relationships between a system and its supporting environment
 - A system is considered to consist of building-block elements or subsystems.
 - The elements can be described in terms of attributes or characteristics.
 - The elements are related to one another through these attributes.
 - The structure and function of the system depend on these relationships.
 - The system engages in purposeful activity. The goals and objectives of the system motivate system function.
 - The system takes in information to support decision making and provides information to the environment.
 - The relationships among elements typically involve feedback loops.
 - The system-environment interactions produce feedback loops in which the system acts on the environment, changing the ways in which the environment acts on the system.

- The open system concept
 - Based on the open system paradigm and on an understanding of realistic system modeling complexity, the following approach to problem solving can be developed:
 - Study the system and environment to learn as much as possible.
 - Use limited-scope modeling wherever helpful to understand the present system and environment.
 - *Estimate the future attribute boundaries that will likely be associated with competitive enterprises.*
 - Draw conclusions regarding the desirable characteristics of the specific enterprise.
 - Plan a sequence of transition steps with learning activities.
 - Conduct the transition steps with a cycle of try-evaluate-learn repeated over and over.

Exercise: CM:I:01

The open system concept

J BUSN RES 1989:19:151-164

Systems Theory Approach to Conducting Industrial Marketing Research

Earl Naumann Douglas J. Lincoln Boise State University