

CIM (21-548)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 7

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: <u>FValilai@sharif.edu</u>, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

Class time

 Sunday-Tuesday 	09:00-10:30
Course evaluation	
 Mid-term 	(30%)

nita term	(2070)
 Final exam 	(50%)
• Quiz	(5%)
Exercise	(15%)

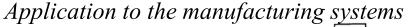
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 7

Course Description (Continued ...)

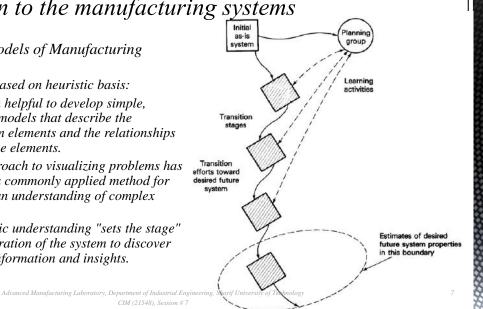
- *Mid-term session:*
 - *Sunday: 16th Azar 1393, 09:00 ~ 10:30*
- Final Exam:
 - Tuesday: 30th Dey 1393, 15:00 ~ 17:30
- *Reference*:
 - Schaefer, D., Cloud-based Design and Manufacturing (CBDM): A Service-Oriented Product Development Paradigm for the 21st Century, . London: Springer, 2014
 - Koren, Y., "The Global Manufacturing Revolution", Wiley, 2010
 - Nasr, A., "Computer-Based Design and Manufacturing An Information-Based Approach", Springer, 2007
 - Mitchell, F.H., "CIM Systems: An Introduction to Computer-Integrated Manufacturing", Prentice Hall College Div; 1St Edition edition (January 1991), ISBN: 978-0131332997

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of CIM (21548), Session # 7

Course Description (Continued..)


Contents:	
 Globalization and Manufacturing Paradigms 	(8 sessions)
System Concepts	(3 sessions)
Evolution of Manufacturing systems	(2 sessions)
 Manufacturing System Design 	(4 sessions)
Manufacturing Equipment Design	(3 sessions)
 Information flow in Manufacturing Systems 	(4 sessions)
Product design and Manufacturing System	(3 sessions)
 Manufacturing System Implementation 	(5 sessions)
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548) Service # 7	5

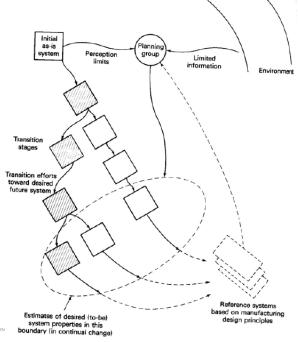
Course Description (Continued..)


Contents:

- Manufacturing System Design
 - Problem definition
 - Computer Integrated Manufacturing
 - Design principles
 - A multi-layer model for study of design principles
 - Implementing system design concept

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session #4

- Developing Models of Manufacturing Systems
 - Modeling based on heuristic basis:
 - *It is often helpful to develop simple,* intuitive models that describe the subsystem elements and the relationships among the elements.
 - This approach to visualizing problems has become a commonly applied method for gaining an understanding of complex systems.
 - A heuristic understanding "sets the stage" for exploration of the system to discover further information and insights.


(4 sessions)

- Problem definition and system approach
 - In order to achieve directed change within an organizational framework, the design or redesign of a manufacturing system requires the establishment of a planning group.
 - This planning group must act to collect information, evaluate alternatives, and make decisions with respect to the perceived choices.
 - To be effective, the group must be endorsed by the organizational leadership.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 7

Manufacturing System Design

Problem definition and system approach

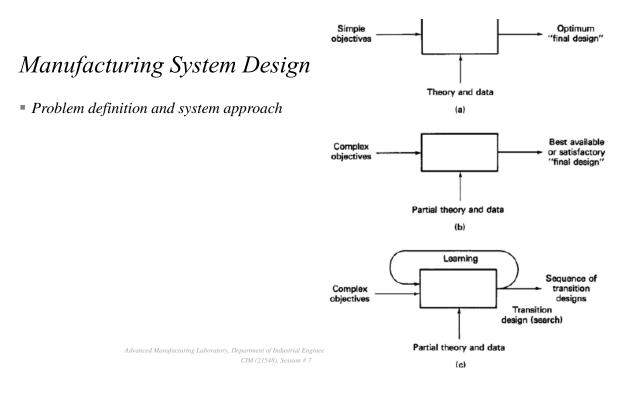
Advanced Manufacturing Laboratory, Department of Industrial Engine CIM (21548), Session # 7

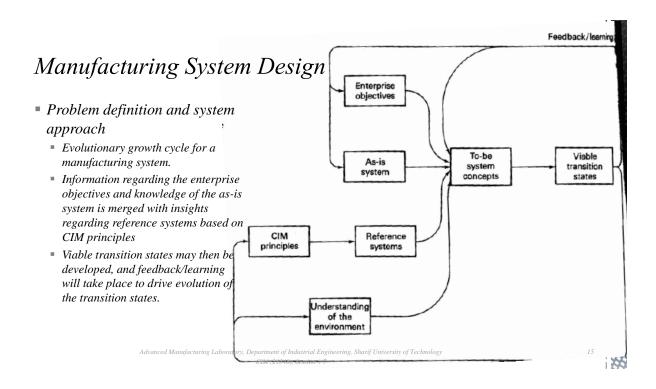
- Problem definition and system approach
 - Using a heuristic visual model:
 - The planning group receives limited information regarding the present environment and even more limited estimates of probable future environments.
 - The environment is in constant change and can only be partly known.
 - The planning group also must develop a detailed understanding of the present (as-is) manufacturing system.
 - This understanding is limited by available information and the perception limits of the group's members.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 7

Manufacturing System Design

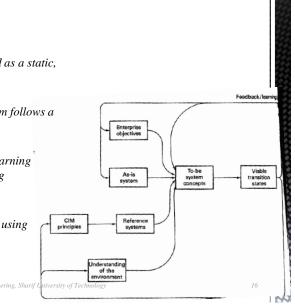
- Problem definition and system approach
 - The planning group is assumed to have access to a set of manufacturing design principles that provide general guidance into the types of to-be system designs that have a reasonable likelihood of providing a competitive manufacturing system.
 - These principles may be used to produce idealized "reference system" configurations.
 - The reference systems typically do not reflect the many subtleties and dimensions of the "to-be" systems, nor the many trade-offs involved in system design, but they do represent limiting cases for selected features of a CIM-oriented system


- Problem definition and system approach
 - Since the environment and reference systems are consistently changing (due to new information and insights), and the as-is system is continually evolving, the preferred to-be system concepts will also change with time.
 - The desired future state for the system will not be fixed but will evolve in time. Thus it is reasonable to conclude that in many cases, the to-be system must be regarded as a temporary concept that will never be achieved.
 - Rather, the to-be system provides a direction for change and serves to specify or constrain the near-term transition stages.


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 7

Manufacturing System Design

- Problem definition and system approach
 - The resultant evolutionary pathway is likely to be a series of transition stages that become the bases for new evolutionary paths.
 - The definition of flexible, robust transition stages thus becomes a key element of the design process.
 - Each transition stage must be a stand alone, viable configuration that does not excessively limit future to-be system concepts.
 - *It may often be necessary to use a transition stage as a starting point toward a revised final configuration that was not originally anticipated.*
 - Major difficulties are thus encountered, since the planning group is working with a moving target.


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 7

- Problem definition and system approach
 - Manufacturing system design thus cannot be approached as a static, linear endeavor with a unique, fixed, optimum solution.
 - Rather, due to constant change and adaptation, the system follows a sequence of trial solutions.
 - System design must be approached as an evolutionary learning process that enables continuous adaptation to a changing environment.
 - The design objective must be a gradual system evolution using robust, flexible transition stages

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif CIM (21548), Session # 7

