

CIM (21-548)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session # 12

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: <u>FValilai@sharif.edu</u>, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

Class time

Sunday-Tuesday	09:00-10:30

Course evaluation

•	Mid-term	(30%)
•	Final exam	(50%)
•	Quiz	(5%)
•	Exercise	(15%)

- LAUTUSE

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 12

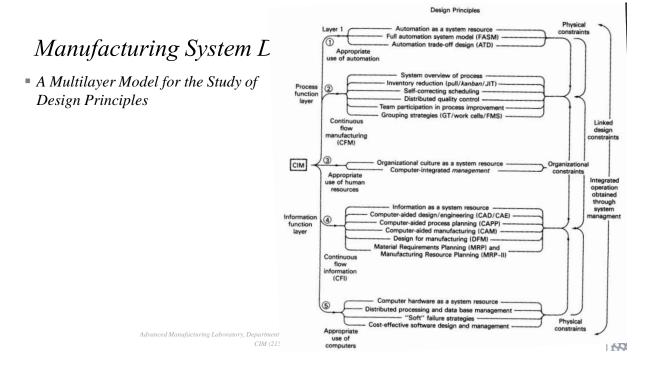
Course Description (Continued ...)

- *Mid-term session:*
 - *Sunday: 16th Azar 1393, 09:00 ~ 10:30*
- Final Exam:
 - Tuesday: 30th Dey 1393, 15:00 ~ 17:30
- Reference:
 - Schaefer, D., Cloud-based Design and Manufacturing (CBDM): A Service-Oriented Product Development Paradigm for the 21st Century, . London: Springer, 2014
 - Koren, Y., "The Global Manufacturing Revolution", Wiley, 2010
 - Nasr, A., "Computer-Based Design and Manufacturing An Information-Based Approach", Springer, 2007
 - Mitchell, F.H., "CIM Systems: An Introduction to Computer-Integrated Manufacturing", Prentice Hall College Div; 1St Edition edition (January 1991), ISBN: 978-0131332997

Dirk Schaefer Editor Computer Integrated Manufacturing Systems: An Introduction **Cloud-Based Design** and Manufacturing (CBDM) A Service-Oriented Product Development Paradigm for the 21st Century Mitchell, F.H. Emad Abouel Ali K. Kamrani The **Global Manufacturing** Revolution **Computer-Based Design and** Manufacturing d An

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of CIM (21548), Session # 12

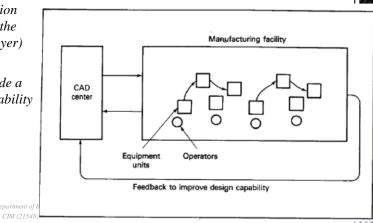
Course Description (Continued..)


Contentes	
 Contents: Globalization and Manufacturing Paradigms 	(8 sessions)
System Concepts	(3 sessions)
Evolution of Manufacturing systems	(2 sessions)
Manufacturing System Design	(4 sessions)
Manufacturing Equipment Design	(3 sessions)
Information flow in Manufacturing Systems	(4 sessions)
Product design and Manufacturing System	(3 sessions)
Manufacturing System Implementation	(5 sessions)
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology	5

Course Description (Continued..)

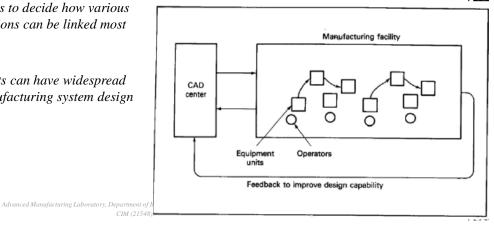
Contents:

- Manufacturing System Design
 - Problem definition
 - Computer Integrated Manufacturing
 - Design principles
 - A multi-layer model for study of design principles
 - Implementing system design concept


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 12

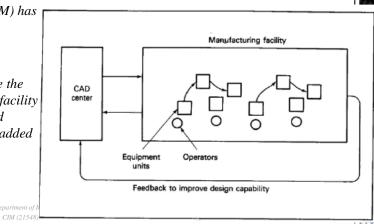
(4 sessions)

Manufacturing System Design


- A Multilayer Model for the Study of **Design** Principles
 - Many of the CIM design principles are formulated around the process function and information function aspects of the system (layers 2 and 4 of the multilayer)
 - The manufacturing operations include a Computer-Aided Design (CAD) capability that is linked to a CIM facility.

Manufacturing System Design

Advanced Manufacturing Laboratory, Depart


- A Multilayer Model for the Study of **Design** Principles
 - One of more or less obvious issues in facility design is to decide how various processing stations can be linked most effectively.
 - *Simple concepts can have widespread* impact on manufacturing system design and operation

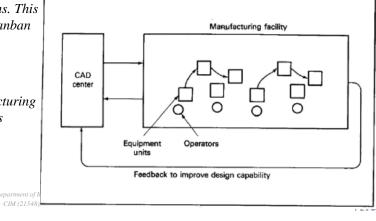
Manufacturing System Design

- A Multilayer Model for the Study of Design Principles
 - Looking at the facility in overview, continuous flow manufacturing (CFM) has been suggested as an appropriate emphasis.
 - An effort should be made to optimize the relationships among all tasks in the facility in order to maximize all value-added activities and remove all non-value-added activities.

Advanced Manufacturing Laboratory, Departi

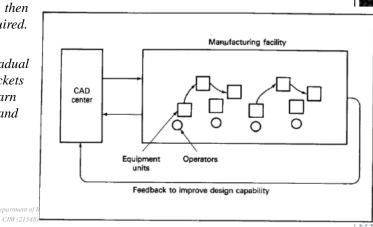
Exercise: CM:I:08

- Developing Models of Manufacturing Systems
 - The advantages of using short cycle time manufacturing (SCM) instead of continuous flow manufacturing (CFM)
 - Martin, D.P.;
 - Published in: Advanced Semiconductor Manufacturing Conference and Workshop, 1998. 1998 IEEE/SEMI
 - DOI: 10.1109/ASMC.1998.731385



<section-header>

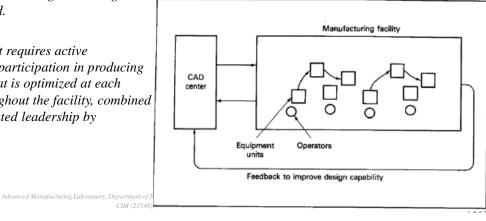
Manufacturing System Design


A Multilayer Model for the Study of Design Principles

- The production process can be controlled by using a series of tickets or tokens for communication among process stations. This type of pull emphasis is also called Kanban
- This same concept can be extended to control input inventory to the manufacturing system from all suppliers. The result is called a Just-in-Time (JIT) approach

Manufacturing System Design

- A Multilayer Model for the Study of **Design** Principles
 - If the to-be system design includes transition stages toward CFM and a pull system, then a major learning program will be required.
 - The transition stages can involve a gradual reduction in the effective number of tickets in circulation, forcing a search and learn activity to improve process efficiency and flow.

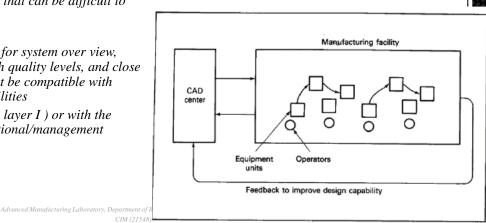


Manufacturing System Design

Advanced Manufacturing Laboratory, Depa

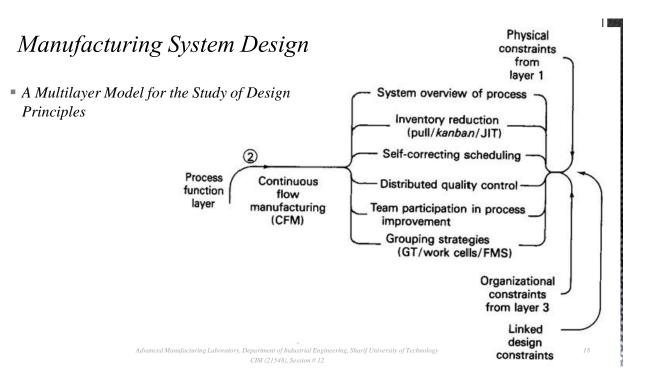
• A Multilayer Model for the Study of **Design Principles**

- A complex monitoring process must be in place, and a self-correcting scheduling system is required.
- The CFM concept requires active operator/worker participation in producing a process flow that is optimized at each station and throughout the facility, combined with system-oriented leadership by managers.


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology CIM (21548), Session # 12

Manufacturing System Design

- A Multilayer Model for the Study of **Design** Principles
 - *CFM thus appears to be a reasonable design* principle, but one that can be difficult to implement.
 - The requirements for system over view, coordination, high quality levels, and close teamwork may not be compatible with equipment capabilities


(constraints from layer I) or with the existing organizational/management structure

(layer 3).

Manufacturing System Design

- A Multilayer Model for the Study of Design Principles
 - A reasonable question is how the various equipment stations should be functionally related to one another.
 - The functional relationships among equipment units are often achieved by:
 - (I) placing units where they would "fit" (drawing on the physical constraints of layer I to determine placement);
 - (2) grouping by class or type of equipment; or
 - (3) grouping to achieve a linear assembly-line flow.

