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A B S T R A C T

Smart factory in the context of Industry 4.0 is the next wave of smart manufacturing solution to empower
companies to rapidly configure manufacturing facilities and processes to enable the fast production of in-
dividualized products at change scales. A key enabling technology for developing a smart factory is resource
virtualization or creation of digital twins. The presented research fills the gap that the industry needs a practical
methodology to enable themselves to easily virtualize their manufacturing assets for developing a smart factory
solution. A test-driven resource virtualization framework is proposed as the recommendation for the industry to
adopt to create digital twins for a smart factory. The proposed framework draws inspiration from past resource
virtualization outcomes with special attention paid to the usability of the proposed framework in a business
environment. It provides a straightforward process for companies to create digital twins by specifying the digital
twin hierarchy, the information to be modeled, and the modeling method. To validate the proposed framework,
a case study was undertaken at an international company, to create digital twins for all their manufacturing
resources. The testing result showed that the proposed resource virtualization framework and developed tools
are easy to use in a practical business environment to virtualize complex factory setups in the cyberspace.

1. Introduction

Today’s ever-connected and decentralized business environment
requires companies to be capable of quickly responding to evolving
market demands to stay competitive in the market. The ability to ra-
pidly configure manufacturing facilities and processes to enable the fast
production of individualized products at change scales has become a
significant focus for many manufacturing companies. This trend has
been recognized at a global scale with the launch of several government
initiatives aiming at delivering smart manufacturing reference models
for companies to adopt to build up this capability. Industry 4.0 pro-
posed by Germany, which is probably the most influential initiative,
aims at creating smart factories where smart manufacturing systems
communicate with each other and rapidly configure themselves for on-
demand production [1]. A smart factory needs to:

• Make real-time engineering decisions: Smart factories allow in-
house production processes to be radically optimized to meet per-
sonalized production needs in almost real-time conditions. This goal
has been recognized by many manufacturing companies with a de-
sire to shift to an agile production environment to support the fast
production of products of diverse variants. The configuration of

legacy engineering systems to support agile production is a chal-
lenge. The quality of the integration between the dominant PDM
(Product Data Management), PLM (Product Lifecycle Management)
and ERP (Enterprise Resource Planning) systems with a goal to
support personalized production is a key component of facilitating
fast and accurate engineering decision-making.

• Monitor all manufacturing resources via industry internet:
Monitoring is an important aspect of smart production. Thanks to
the ubiquity of sensors, wireless network, and cloud storage im-
plementing sensor networks to collect key engineering information
related to people, machine and processes in a factory is achievable.
Analytics on manufacturing data can provide factory management
team with insights on the snapshot of each machine, and the ca-
pacity of a factory so that data-driven production planning and
forecast can be achieved.

• Understand its own capabilities and self-organize production
activities: A smart factory can understand its capabilities based on
gained engineering knowledge via self-learning and therefore or-
ganize production activities autonomously. Engineering knowledge
learned from manufacturing data requires context and meaning. The
generated knowledge graph based on collected manufacturing data
will be used for decision-making at a higher level.
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To achieve the above vision, there has been a good amount of sci-
entific efforts devoted to developing smart factory models and case
studies. Jay Lee et al. proposed a generic high-level cyber-physical
system (CPS) architecture towards digital factory [2]. The primary use
of CPS in factory floors is to lay the foundation for smart factory
management by virtualizing physical assets into the cyberspace and
creating resilient, intelligent, and self-aware machines. Five layers are
specified in the proposed CPS architecture: 1. smart connection to
physical assets via various sensors, 2. conversion of data to information
for each connected asset, 3. cyber level as the central information hub
where machines are interconnected into a virtual network, 4. knowl-
edge generation of the acquired information to present to end users for
making business decisions, and 5. machine self-configuration based on
human decisions. The second and third layer in this architecture re-
quires a semantic model that allows a physical asset to be abstracted to
a digital twin in the cyberspace. Constructing mirrors of physical
manufacturing resources in the cyberspace is a significant underlying
technology for developing a cyber-physical system [3]. The research
work in this paper focuses on developing a methodology to enable the
development of a feasible semantic model that supports easy creation of
digital twins for physical assets in a factory so that high-level factory
monitoring and planning systems can rely on the generated digital
twins.

Digital twin reflects two-way dynamic mapping of physical objects
and virtual models [4]. The essence of a digital twin presents a mid-
dleware architecture that abstracts the shop-floor hardware for usuage
at high-level engineering management systems to make real-time de-
cisions. At its technical core, the concept of a virtualized version of the
physical manufacturing asset signifies a data model that encapsulates
its technical specifications and information relationship with its ex-
ternal environment [3]. Specifically, it is the virtualization of physical
entities [5]. A common practice is to develop a semantic model for
encapsulating machine specifications and capabilities and relationships
between the resources. There has been some research work on devel-
oping semantic models for predictive maintenance [6], machine fault
diagnosis [7], digital factory [8], prognostics [9] etc. To take these
research outcomes to real industry application, there is a need to de-
velop guidelines and frameworks that empower companies to system-
atically develop semantic models for smart factories in Industry 4.0
environment based on their own factory setups and business needs. The
research work presented in this paper proposes a systematic framework
for developing smart factory semantic models and virtualizing factory
assets using the development model. The framework for developing a
feasible virtual smart factory using a proper modeling language with
the ability to enable on-demand knowledge-based business decisions is
considered as the key contribution of the presented research work. The
authors understand that another key aspect of a CPS is that a digital
twin is required to always stay in synchronization with the physical
entity using advanced sensor technologies. This is not the focus of this
research. A sample semantic model for a real factory environment is
presented as a case study to show the process of virtualizing a factory
using the proposed framework. The rest of the paper is organized as
follows. Section 2 reviews the literature in related research areas and

highlights the research gap that motivated the presented research work.
The framework for virtualizing resources of a factory is presented in
Section 3 with detailed discussions on the logic of the resource vir-
tualization process and essential data to be abstracted in the digital
counterpart. A case study with a global manufacturing company is
presented in Section 4 to validate the proposed framework. Discussions
on the testing results and industry feedback are presented in Section 5.
Section 6 concludes the research work and highlights future research
directions.

2. Literature review and research gaps

The role of a cyber-physical production system in a factory en-
vironment is to allow companies to quickly adapt to market changes via
flexible configuration of manufacturing resources for the rapid pro-
duction of one-off personalized products while maintaining required
margins. It requires cyber-physical systems to be able to self-organize
production activities at the configuration level using machine dynamics
information from cyber level [2]. Resource virtualization is a key en-
abling technology for developing cyber-physical production systems
[10]. This section reviews the reported research related to resource
virtualization and highlights the research gap.

2.1. Literature review

Cyberspace in cyber-physical systems is an information hub that
stores all the digital twins of all physical manufacturing assets.
Manufacturing assets consist of diversified and distributed manu-
facturing resources (equipment, computational resources, materials,
software, knowledge, and skills) (see Fig. 1 for further details) [11].
These resources in a factory are the key manufacturing assets to be
virtualized in the cyberspace. With regard to manufacturing resource
modeling, standards such as STEP-NC were recognized as playing an
important role [12]. A novel STEP-NC compliant machine tool data
model was developed to enable modeling of machine tools in the cy-
berspace for process planning and manufacturing [13]. The developed
machine tool data model provides adequate information, such as ma-
chine geometry, cutter information, process information to support
process planning in a smart factory. Similarly, a STEP-NC based data
model was proposed to model CNC machine tools and their auxiliary
devices. The focus of this developed model is to define the physical
components and the kinematic chains of a machine tool in the cyber-
space. Wang and Xun also investigated abstracting capabilities details
from distributed manufacturing resource and utilizing these informa-
tion in the cyberspace to drive decision-making in matching manu-
facturing facilities with production jobs [14]. More importantly, the
functionality of a resource at different granularity levels needs to be
modeled [15]. Before the virtualization of resources, the granularity
levels, the resource categories in each granularity level and the virtual
models of each kind of resource need to be defined. Another multi-
granularity manufacturing resource model was also proposed to model
manufacturing capabilities at different granularity levels [16].

To enhance the semantic interpretation of virtualized

Fig. 1. Classification of manufacturing assets in cyber-physical systems.
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manufacturing resources in the cyberspace, semantic web languages
such as OWL (Ontology Web Language) were used and the capability of
querying the semantic model of virtualized manufacturing resources
was demonstrated [17]. The possibility of modeling machine tool
concepts defined in established industry standards using OWL language
was explored in [18]. In this research, the mapping mechanism between
ontology model and concepts in existing industry standards was dis-
cussed in detail. A more systematic model for describing manufacturing
equipment resources was presented in [19]. They described manu-
facturing resource from two aspects: static functional capability and
dynamic production capability, using the ontological method. Func-
tional capabilities are stationary and describe what kind of work a
machine can perform, whereas production capability reflects the per-
formance of a machine during a given time. In a more recent study, an
ontology was developed to define the semantics of machine compo-
nents and of all the data that will be communicated from and to phy-
sical machines [20]. The developed ontology provides mapping attri-
butes for machine status and operation at device, component, and sub-
component levels.

2.2. Research gaps

The literature has well recognized that physical manufacturing as-
sets need to be virtualized in the cyberspace to enable high-level de-
cision-making in a cyber-physical system. The physical attributes and
functional attributes of a manufacturing resource should be specified
explicitly using a machine-readable language. Early prototypes de-
monstrated various technologies to virtualize physical objects including
XML-based description and parsing, SQL database storage, Non-SQL
methods and semantic web technologies. However, these findings are
not exhaustive on the methodologies for resource virtualization in
cyber-physical systems. How to implement these methods in a manu-
facturing company to enable virtualizing the factory environment and
building a CPS-powered smart factory is critical to the success of re-
source virtualization in a real industry environment. Hence, there is a
need to create a framework and a set of tools that enable a manu-
facturing company to easily build the digital twins for a factory. The
developed framework needs to explicitly represent all the essential in-
formation of all the manufacturing resources in a factory and the de-
veloped digital twins can be easily inferred by high-level programming
languages systems and will support self-organizing decision making at a
later stage. The presented research was motivated to develop such a
framework that can meet the above requirements.

3. The proposed resource virtualization framework

This section introduces a resource virtualization framework that is
envisioned to enable a company to successfully virtualize all the re-
quired manufacturing resources for developing a smart factory solution.
Creating the digital counterpart of a factory involves resolving three
main problems: (1) Selecting a factory reference model, (2) selecting a
resource virtualization process that ensures high-quality digital twins

are created and verified, (3) developing a semantic model that contains
all the required concepts for explicitly representing a physical resource
and creating the digital twins. The rest of this section discusses the
details of the proposed framework in these three aspects.

3.1. Hierarchical system architecture of a factory

Creating the digital twin of a factory requires a good understanding
of the structure, activities, and processes of the target factory or even
the business. This information can be retrieved from enterprise mod-
eling of the structure of the factory and the links between the under-
lying units [21]. A typical reference model for Industry 4.0 is RAMI 4.0
model that breaks down all elements and IT components in a layer and
life cycle model [22]. In this model, the architecture of factories in
Industry 4.0 is changed to a multi-level connected network of partici-
pants that interact across hierarchy levels [23]. As shown in Fig. 2,
Industry 4.0 is a connected world that links groups of factories, external
engineering firms, and suppliers. Within a factory, field devices, work
units, and work centers are organized systematically for carrying out
different types of production.

The hierarchical architecture of a factory can be specified at three
abstract level, i.e., enterprise level, factory level, and equipment level.
The digital twin at the enterprise level specifies its history and product
offerings. The digital twin at the factory level details the specific pro-
duction capabilities that the factory has, which allows a cyber-physical
system to quickly locate the correct factory for a production order
without drilling down to the equipment level. Digital twins at the
equipment level in the factory are created to abstract its detailed cap-
abilities and physical state.

Digital twins at these three levels form a multi-granularity virtual
representation of a factory in the cyberspace. As is seen in many cyber-
physical production system applications, resource virtualization focus is
placed at the equipment level which makes perfect sense when the goal
is to develop smart manufacturing equipment. The business interactions
at the factory level and enterprise level are equally important to be
virtualized when developing a smart factory solution. Accurate mod-
eling of the business activities at these two levels provides the required
data for possible streamlined business execution via integration with
business management applications such as PDM and ERP system. The
modeling at the enterprise level and factory level is also important for
intelligent configuration of production activities and horizontal in-
tegration. This is because the efficient production of personalized pro-
ducts relies on close collaboration between companies in the whole
product development process. The effective configuration of a suitable
production network needs accurate capability description in the cy-
berspace at the enterprise level and the factory level and of course at
the equipment level.

3.2. Components of a digital twin

In the cyberspace, the digital abstraction of a manufacturing asset
includes three integral parts: 1. technical specifications, 2. functional

Fig. 2. Hierarchical system architecture in Industry 4.0 (adapted from [22] and [23]).
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capabilities, and 3. availability information (Fig. 3). Technical specifi-
cations are a list of attributes that define the technical characteristics of
a manufacturing asset. It is often published by the manufacturer of a
manufacturing resource to help users understand the general func-
tionalities of the manufacturing resource. Take CNC milling machine as
an example. Its technical specifications include manufacturer, max
machining envelope, control system, maximum spindle speed, mass,
spindle motor power, etc. Technical properties are normally static in-
formation which is not likely to change over time after a resource is
produced and put into production. These specifications give a CPS a
basic profile of a virtualized manufacturing resource in the cyberspace
and this information can be used as the criteria for a quick screening
when a smart factory configures production activities.

Functional capabilities specify what a manufacturing resource can
be used for under what condition and as a result generates what output.
Functional capabilities of a manufacturing resource are often shop
floor-dependent, though there are general understandings of what a
manufacturing resource can do. These different definitions of a manu-
facturing resource’s capability result from differences in business stra-
tegies, operator expertise, etc. Functional capabilities can change over
time.

Machine availability information reflects the status of a monitored
machine, telling its capacity and availability information. Machine
availability monitoring is not a problem anymore due to the advances

in IoT and network communication technologies. Real-time machine
availability and execution status during metal-cutting operations are
used as part of a cloud-based process planning system [24]. Recently,
Cai et al. developed a method to integrate manufacturing information
such as spindle speed, feed rate, and cutter location and sensory data,
such as vibration and current to form digital twins of machine tools
[25]. These data are analyzed and integrated to enable remote users to
monitor machine tool production status via a remote computer.

These three components form the complete digital counterparts of
any manufacturing resource. A cyber-physical system depending on its
application may need more detailed data abstraction on any of these
three components. For instance, cyber-physical machine tool needs
comprehensive technical specification and availability status in the
cyberspace to capture intuitive and high-fidelity machine snapshot
[26], whereas a CPS-based predictive maintenance solution requires
detailed functional capability description based on a domain semantic
model [6].

3.3. Virtualization methodology

Each cyber-physical system within a factory is designed for a unique
business application, in which digital twins are unique per the unique
factory environment and business requirements. Therefore, the se-
mantic model that provides the data schema for virtualizing manu-
facturing resources in a factory environment is unique to the scope of
the application to which it is devoted. A bottom-up approach to vir-
tualizing manufacturing resources is required to enable a factory setup
can be easily virtualized. The diagram below presents the proposed
resource virtualization process that a company can follow to create its
digital twins. This resource virtualization process improved existing
generic ontology development processes [27,28] by integrating test-
driven product development [29] and agile practices [30], both of
which are well-accepted software programming practices. The diagram
below (Fig. 4) shows the overall process.

Requirement analysis is a process of discovering manufacturing
resources to be virtualized and their essential attributes to be abstracted
in the cyberspace. This process needs a good understanding of how the
target cyber-physical system will be used in the real world and what
data will need to be made available to fulfill the application require-
ments. Once all the application scenarios are identified, all the desired
real-world application scenarios using the target cyber-physical system
should be converted into testable use cases and these use cases will be
used to validate the performance of the virtualized manufacturing

Fig. 3. Components of a virtual manufacturing resource.

Fig. 4. A test-driven resource virtualization process.
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resources later.
Next is to develop the ontology that contains all the required con-

cepts for virtualizing the manufacturing resources. In computer and
information science, ontology represents knowledge as a set of concepts
within a domain, using a shared vocabulary to denote the types,
properties, and interrelationships of those concepts [31]. Ontology
model can be described as a set =O C RS I{ , , }, where C is a collection of
concepts in the domain also called classes, I is a set of individual in-
stances of classes, RS represents the relations between two concepts or
particulars. The key in the ontology development process is to de-
termine the scope and reuse existing international standards [32]. After
identifying the important terms, the next step was to ascertain the re-
lationships among these terms. This process involves the creation of
classes, object properties and data properties, and organize them in a
meaningful hierarchy. The last step is creating individual instances of
classes in the hierarchy. Defining an individual instance of a class re-
quires (1) choosing a class, (2) creating an individual instance of that
class, and (3) filling in the slot values. This step is optional and will only
be required if there is a need to have some constant instances to be
referenced or linked by digital twins. Such examples include a specific
date time, list of countries, etc.

Up to this point, a trial ontology has been created based on the
initial requirements. The next step is to virtualize manufacturing re-
sources using the developed ontology. Based on the discussion in
Section 3.1, a digital twin of a physical manufacturing resource consists
of three components: technical specifications, functional capabilities,
and availability status. In the proposed framework, each manufacturing
resource is abstracted as an instance of a defined resource type and its
technical specifications are represented as the data properties of the
resource instance. Availability status which is the dynamic properties of
a resource is also represented as the data properties of a resource in-
stance. These properties can be updated when the status changes. For
instance, machine spindle speed can be a data property of a CNC

machine instance and its value can be changed as the updated value
comes from the connected sensors. Shop floor-dependent functional
capabilities can be represented using semantic web rule languages to
explicitly model the complex engineering knowledge. Regarding se-
mantic web languages, OWL is a well-recognized common ontology
formalization language, which has extensive support for expressing
meaning and semantics and has great ability to represent machine in-
terpretable content on the Web. Moreover, semantic web rule languages
provide the required expressiveness, enabling machine interpretation,
automated processing, and translation into other such semantic web
languages, some of which are also the execution syntax of rule engines.
They are usually used as additional means to build knowledge-based
systems on top of ontology because of its rich expressiveness and good
integration with ontology and rule engine. Some of the important se-
mantic web rule languages include RuleML (Rule Markup Language)
[33], SWRL [34], and RIF (Rule Interchange Format) [35], as well as
platform-specific rule engine languages such as Jena [36]. In the pro-
posed framework, OWL is selected as the ontology language as it pro-
vides maximal expressiveness while retaining decision-making. Jena is
selected as the rule language for modeling resource capabilities because
it has good reasoning infrastructure to interface with RDF and OWL.

After all the manufacturing resources are abstracted as digital twins
using the developed ontology, next step is to run the created unit tests
and check whether all the required data has been abstracted in the
cyberspace. The entire process ends if all the test cases pass unless
ontology or digital twin refactoring needs to be carried out to improve
the ontology or the related digital twin until all the test cases pass. This
test-driven iterative resource virtualization process ensures the final
digital twins reflect the nature of the corresponding physical manu-
facturing resources.

4. Case study

This section presents a case study on using the proposed framework
to virtualize manufacturing resources in a cyber-physical system. The
case study is part of a knowledge transfer collaboration with a world-
leading supplier of sealing solutions. The knowledge transfer colla-
boration aims at implementing and trailing the R&D outcomes on smart
factory in this multi-national enterprise by developing a smart factory
solution to automate inter-factory production management between all
the subsidiaries via real-time production status-based production con-
figuration. The remainder of this section details the process of virtua-
lizing manufacturing resources for a typical factory in this enterprise
with an overview of the created ontology and digital twins and how
they are used in the overall smart factory solution.

Fig. 5. Ontology requirements specification document.

Table 1
STEP-NC parts.

Part Number Title Publication date

ISO 14649: 1 Overview and fundamental principles 2003
ISO 14649: 10 General process data 2003
ISO 14649: 11 Process data for milling 2003
ISO 14649: 12 Process data for turning 2005
ISO 14649: 111 Tools for milling 2004
ISO 14649: 121 Tools for turning 2005
ISO 14649: 201 Machine tool data for cutting process 2011
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4.1. Project background

The case company provides world-leading sealing solutions to al-
most all industries with factories in German, America, Japan,
Singapore, New Zealand etc. They used to supply a wide range of
standard mechanical seal systems, but the market has now required
them to provide highly custom sealing solutions. To adapt to this
market change, their product delivery model has been changed to en-
gineer-to-order; every sealing solution is custom designed and pro-
duced. This change has received huge resistance from the shop-floor
environment because the production setup of most of their factories is
designed for mass production of standard product variants. Currently,
production activities are manually planned by a master production
planner by checking inwards production orders and factory capacity,
which is error-prone and fails to guarantee optimal cost control. At the
company level, coordination between factories relies on sales engineers
to track the production capability of each workshop via email com-
munication, which was identified as one of the most tedious business
processes throughout the project lifecycle. Therefore, the project was
originated from the need of developing an inter-factory smart factory
system that allows the business to easily check the capabilities of each
workshop and their capabilities and ultimately enables the business to
deliver optimal on-demand production for product development at
changing scale.

In this project, a CPS is proposed as the recommendation for
transforming the factory environment into a monitored and connected
smart factory, in which manufacturing assets talk to each other in the
cyberspace and the system itself constantly optimizes production

activities using streamed machine status and capability information. A
significant piece of the complete smart factory solution is to create
digital twins of all the manufacturing resources in the factory en-
vironment.

4.2. Developed ontology

The case study selected a typical factory in this company to validate
the effectiveness of the proposed resource virtualization framework. As
recommended by the proposed resource virtualization process in
Section 3, the first step is requirement analysis. In this project, the goal
is to develop a smart factory system that allows the business to un-
derstand each factory’s capability and real-time project production
progress and use this information to automatically schedule new pro-
duction orders (Fig. 5). Therefore, the main requirements include: being
able to (1) represent and store the real-time status of machine tools and
cutters, and (2) represent the functional capabilities of each manu-
facturing resource. The required ontology is mainly for virtualizing
manufacturing assets and describing manufacturing capabilities. It
mainly deals with information about ownership, technical properties,
and functional capabilities. The domain knowledge is sourced from
domain experts, reusable ontologies, related industry standards, ma-
chine tool vendors, and potential use cases.

After the scope is identified, existing ontologies and industry stan-
dards are considered. At the time of this research, there is no officially
recommended ontology in the manufacturing domain on the W3C
website. In the manufacturing domain, the most notable industry
standard is STEP/STEP-NC. The standard consists of several parts, each

Fig. 6. Screenshot of converted concepts from STEP-NC standards.
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focused on an application domain. Some of the parts are listed in
Table 1 and these parts should be incorporated.

In this case, we used a Protégé plugin called OntoSTEP to translate
the above standards to ontologies represented in OWL [37]. Hence, we
created the proposed ontology by first merging all relevant ISO 14,649
parts, and then converting them to ontology using OntoSTEP. Following
this, we examined the integrity of the ontology and manually added
additional compulsory classes and individuals in Protégé. To be spe-
cific, a combined schema of ISO 14,649—Part 10, Part 11, Part 12, Part
111, Part 121 and Part 201 was created. The verified schema was fed
into Protégé and converted into an ontology using OntoSTEP. As can be
seen from Fig. 6, EXPRESS entities and instances were mapped re-
spectively to OWL classes and individuals. Attributes correspond to

OWL properties ObjectProperties link classes together, while DataPro-
perties link classes to data types. A complete summary of the proposed
OWL mapping of the basic concepts of EXPRESS is available at [37].

Next, it is necessary to verify the created ontology against default
resource specifications from machine tool vendors and potential ap-
plication scenarios. The main task is to examine whether the created
ontology can readily and truly represent manufacturing resources. New
classes and properties are considered where essential information about
a resource cannot be handled by the ontology. For instance, the gen-
erated ontology lacks a geometrical description of face milling cutters.
Therefore, definitions from ISO 13,399 are added to the ontology, for a
comprehensive representation of face milling cutters. Moreover, de-
scriptions for cutters from SANDVIK and descriptions for machining
centers from OKUMA were integrated into the ontology because cutters
used in this company are all sourced from these two suppliers. As can be
seen from Fig. 7, definitions for cutters, such as depth_of_cut_maximum,
body_diameter, and overall_length from ISO 13,399, were imported into
the ontology.

Fig. 8 presents a small subset of the resulting ontology with a cap-
ability description for machine tools. In this ontology, engineering
practice in classifying a CNC machine tool was incorporated into the
ontology. Based on the investigation with major machine tool vendors,
such as Mazak, OKUMA, and DMG, it was found that machine tools are
mainly classified as milling machines, turning machines, machining
centers and multitasking machines. Another attribute is the number of
axes that a CNC machine tool can move on simultaneously. At the
present stage, there are machine tools that can support 5-axis ma-
chining. In the ontology, only 2-axis to 5-axis are defined as machine
types. However, to reflect the multi-task capability of a machine tool, a
list of machine functions was created, including turning, milling, dril-
ling, grinding, etc. A machine tool can have multiple machine functions
associated with it.

A custom virtualization template was created for a unique type of
machine tool in the factory. This is to enable the case company to easily
create the digital twins for each machine tools in the factory. Take
‘Quick Turn Nexus 100-II MS’ [38] as an example; the final description
model is as follows (Fig. 9). This CNC turning center with multitasking
capability features milling capability and a second turning spindle to
process parts in single operation. For other types of machine tools, a
similar description template is created too.

Virtualizing cutters is as important as virtualizing machine tools.
The decision-making process for selecting a correct cutter highly de-
pends on the specifications of the target component and available
machines. A cutter can only achieve its best performance under

Fig. 7. Further integration of machine tools and cutters.

Fig. 8. Top-level capability description for machine tools.
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particular conditions. For example, sometimes a cutter can only work
with a coolant supply and can only be used for a specific kind of
workpiece material. These constraints are important aspects to be
considered in the process of constructing the ontology. In this project,
the main concern related to cutters is to determine if a cutter can be
used to produce a workpiece. Therefore, only component-related con-
straints need to be included in the description model. For this reason,
the main capability description for cutters should focus on the material
a cutter can process and the machining process(es) a cutter can be used
for.

The metal cutting industry produces a wide variety of components,
machined from many different materials. The component material
strongly influences the choice of cutting tool geometry, grade, and
machining parameters. Therefore, workpiece materials have been di-
vided into six major groups, in accordance with ISO standard [39], and
each group has unique properties regarding machinability (Table 2).

Machining is any of various processes in which a piece of raw ma-
terial is cut into a desired final shape and size by a controlled material-
removal process. The differences between the various types arise from
the relative motion between a cutting tool and the workpiece and type
of cutting tool used. Thus, machining processes are classified as turning,
milling, and hole-making processes (Fig. 10). For turning operations,
there are dedicated cutters for general turning, parting off, and
grooving. General turning can be further classified as external turning
and internal turning, based on the spatial pattern between the com-
ponent and cutter. Turning can be broken down as longitudinal turning,
facing or profiling. Grooving requires a different kind of cutter from
that used for general turning, although both processes employ a lathe.
Based on the characteristics of the target machining feature, a grooving
process can be further differentiated as external grooving, internal
grooving, and face grooving. Milling includes several highly versatile

machining operations taking place in a variety of configurations. It
mainly includes plain milling, face milling, end milling, form milling,
profile milling, slot milling, chamfering, gear milling, and turn milling.
The hole-making process can be classified as general drilling, chamfer
drilling, and step drilling, according to the characteristics of the hole.
Chamfer drilling produces holes with a chamfer or some deburring;
some typical examples are screw and rivet holes. Step drilling is used
for producing a stepped or stepped and chamfered hole. Typical ap-
plications are components with screws or bolts where the head needs to
be hidden. When enlarging or improving the quality of an existing hole,
boring is used. Reaming is usually a finishing operation to achieve high-
precision holes. Three different threading methods (thread turning,
thread milling, and tapping) are used, depending on the component, the
machine, and batch size.

A class called MaterialGroup was created in the proposed ontology,
and six instances of this class were created as built-in individuals in the
ontology, namely, ISO_P, ISO_M, ISO_K, ISO_N, ISO_S, and ISO_H
(Fig. 11). In the proposed ontology, these machining methods were
added as instances of theMachiningFunction class. A cutter can be linked
to these capability tags when being inserted into the knowledge base. It
should be noted that a cutter can be tagged with multiple tags. For
example, a cutter may be able to process all the materials under six
groups. In addition, a machining process was divided into roughing,
semi-finishing, and finishing, according to differences in machining
goals and strategies at different machining stages.

4.3. Digital twins of the factory

The next step is to create digital twins of the case factory after the
ontology is developed. In this project, we created digital twins for the
factory at three hierarchical level: enterprise level, factory level, and

Fig. 9. Ontology model for Mazak Quick Turn Nexus 100-II MS.

Table 2
Grouping of workpiece material.

Material Groups ISO P ISO M ISO K ISO N ISO S ISO H
Steel Stainless steel Ferritic & Martensitic Stainless steel Cast iron Nonferrous materials Heat resistant alloys Hardened materials
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equipment level. In the case study, interviews were carried out with
senior managers from the company to summarize its vision statement
and product offerings. It was concluded with the following company
profile:

“Company X is one of the leading international suppliers of industrial
sealing solutions. Its products are installed wherever safety and reliability

are major design considerations, for example in the oil & gas, refinery,
chemical, energy, food processing, paper, water, marine, aerospace, and
mining industries. A workforce of more than 5200 creative and highly
motivated employees develops tailored solutions for its customers.”

The translated semantic description is as follows (Fig. 12): this de-
scription was input into the database as the digital twin for the

Fig. 10. Classification of machining method for cutters.

Fig. 11. Top-level capability description for cutters.
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company in the cyberspace.
The factory involved in this case study is the company’s develop-

ment center in New Zealand. This workshop is capable of fabricating
and assembling most sealing parts, except that the grinding process
must be subcontracted to another factory in Australia because of re-
source limitations. The resultant digital twin is as follows (Fig. 13):

At the equipment level, the case factory owns several multitasking
CNC machines and cutters. The engineers in the factory have years of
CNC machining experience, which gives the factory the ability to pro-
cess some very complex machining requirements with unique process
know-how. Thus, additional capability description was added to the

equipment to model the functional capabilities.
To enable the case factory to easily create digital twins for their

equipment, a ‘template-per-resource’ approach is adopted; each pre-
dominant kind of manufacturing resource is given a custom template
with all the required data fields and common attributes prepopulated. A
web-based system (Fig. 14) is developed to allow the case company to
select the correct template and type in the unique data attributes for a
resource to create its digital twin. In addition, functional capabilities
are inserted via the same web interface. On this web page, the case
company fills in a very simple web form which requires the following
fields:

• Name – the name of the new resource. This name should be unique
within the company and the resultant resource is in the form of
‘Resource Name_Company Name’. This is to ensure the name of a
resource is unique in the database, as it is very important for pro-
duction configuration at a later stage.

• Description – detailed description of the inserted resource. This can
include its location, characteristics, etc.

• Item Code – this provides a way of identifying specific items and
categorizing related inventory resources. It allows fast resource
identification and tracking.

• Category – this dropdown list includes many predominant resource
types in the case company. When a category is selected, the related
digital twin template is loaded at runtime. For example, if
‘MazakQTN100IIMS’ is selected, the template in Fig. 15 will be re-
trieved from the database and pre-processed.

• Status – this predefined dropdown list contains frequently-used
keywords for representing a resource’s status. A resource’s status is
used to determine its capacity.

• Optional Capability Description – this text area is for inputting
functional capabilities in Jena rule language.

Taking ‘Mazak Quick Turn Nexus 100-II MS’ as an example, the
semantic template for this kind of machine tool is as follows, with all
the basic capability information specified (Fig. 15). When a new in-
stance of this type of machine is virtualized to the cyberspace, only the
name of the machine, spindles, turret, and machine owner will be up-
dated. Additional functional capabilities in Jena rules are directly
stored in the backend database and associated with the resource in-
stance.

The screenshot below (Fig. 16) shows the web interface for creating
the digital twin of a Mazak Quick Turn Nexus 100-II MS machine tool.
The case factory uses this machine tool as per standard operations re-
commended by Mazak product operation manual with only one ex-
ception that their engineers sometimes use it for end milling operation

Fig. 12. Digital twin for the case company.

Fig. 13. Digital twin for the case factory.
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with a turning set-up. This unique capability is described in Jena rules
and stored in the database.

The screenshot below (Fig. 17) shows a complete list of digital twins
for the case factory recorded in the web system. A user can also click the
icons to view detailed information about a resource, edit a resource or
delete a resource.

5. Discussions

The case study demonstrated how the proposed resource virtuali-
zation framework enabled the case company to create digital twins for

their factories from enterprise level down to equipment level in the
context of developing a cyber-physical system enabled smart factory
solution. Further research with the case company developing the smart
factory solution was found as a straightforward process because all the
manufacturing resources have been virtualized with explicit machine-
readable capability description. The successful action of creating digital
twins and later developing the smart factory solution was attributable
to two key factors: an easy-to-follow resource virtualization metho-
dology and an easy-to-use web interface for creating digital twins. It
was found that the proposed resource virtualization methodology gives
them a standardized way to tackle the problem of creating digital twins
in the cyberspace. The test-driven process of analyzing requirements,
developing semantic model and virtualizing resources is like common
product development processes, which makes it easy to be understood
and implemented by in-house developers from the company. Feedback
from the case company also highlighted that the clear guidance on the
data to be abstracted (i.e., technical properties, functional capabilities
and availability status) made the development process much easier. In
addition, the resource virtualization templates and developed web in-
terface empowered the case company to quickly create digital twins
with simple clicks.

Feedback from the case company suggested that more human-
friendly tools should be provided for specifying the functional cap-
abilities of a manufacturing resource though Jena rule syntax is
straightforward to understand. Natural language processing tools are
encouraged to be developed to automatically mining human language
and convert to semantic web rule languages. It is also recommended
that commercialization effort should happen to disseminate the re-
search outcomes to a wider group, especially to machine tool vendors,
to standardize digital twin templates for recognized manufacturing
resources. Then, a network of digital twins can be formed with con-
nections to distributed physical manufacturing resources so that cyber-
physical systems could be developed in a drag-and-drop fashion.

6. Conclusion

Companies nowadays are required to transform the current practice
of product development management into a smart factory solution that
enables rapid production configuration to achieve the fast production of
individualized products at changing scales. A key enabling technology
in the generic smart factory architecture is resource virtualization or
creation of digital twins. The presented research attempted to fill the

Fig. 14. Web interface for creating a digital twin of a manufacturing resource.

Fig. 15. Digital twin template for Mazak Quick Turn Nexus 100-II MS machine
tool.
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gap that the industry needs a practical framework to enable companies
to virtualize their manufacturing resources by specifying the data to be
abstracted and the processes to virtualize manufacturing resources. A
test-driven resource virtualization process is proposed as the re-
commendation for the industry to adopt to create digital twins for their
smart factory solutions. The proposed process draws inspiration from
past resource virtualization outcomes with special attention paid to the
usability of the proposed solution. It provides a straightforward process
for companies to create digital twins especially with the assist of a
developed web interface, making the entire process of virtualization
just filling a web form. Equally important, the research highlighted that
the data to be virtualized in the cyberspace consists of three integral
components: technical properties, functional capabilities, and real-time
status. Semantic web languages, OWL and Jena are recommended as
the modeling languages. To validate the proposed approach, a practical
case study was undertaken at an international company, to create di-
gital twins for all their manufacturing resources. This case study
showcased how a multi-granularity digital twin structure is facilitated
by the proposed virtualization approach. The enterprise-level digital
twin was modeled by converting its vision statement and profile into
machine-readable semantic data, using concepts from the developed
semantic model. At the factory level, more detailed capability was

specified, and digital twins were constructed at the equipment level.
The most notable contribution of the resource virtualization meth-

odology is its flexibility in the virtualization process, making it easy for
industry to adopt. The framework can be extended to any type of re-
source virtualization in developing a cyber-physical system. Future
work includes the upgrade of the description language for functional
capabilities using natural language processing technologies to allow
capability description without the Jena syntax.
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