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A B S T R A C T

This paper proposes a novel approach to develop a production-oriented software system aimed to assist shop
floor actors during a Manufacturing Problem Solving (MPS) process. The proposed system integrates the pro-
blem-solving method 8D, Process Failure Mode and Effect Analysis (PFMEA), Case-Based Reasoning (CBR), and
Product Lifecycle Management (PLM). The system is based on an ontology that enhances and extends existing
proposals to allow representing any type of manufacturing problem linked to production lines and reusing
PFMEA analysis results. The architecture of the system is based on SEASALT (Shared Experience using an Agent-
based System Architecture LayouT), which is a multi-case base domain-independent reasoning architecture for
extracting, analyzing, sharing, and providing experiences. A proof of concept prototype was developed, im-
plemented, and tested in a company. The results, which were collected in two different manufacturing plants of
the company, show the feasibility of the proposed approach and validate the conceptual proposal presented in
this paper.

1. Introduction

Analytical methods are typically applied to prevent failures during
the design phase of manufacturing processes and machinery. PFMEA
(Process Failure Mode and Effect Analysis) is a preventive technique
that allows identifying potential failure modes of a process and the
effects of such failures. It also allows assessing the criticality of these
effects on the production process. From a conceptual perspective,
PFMEA is a preventive technique that helps avoid the occurrence of
problems during the execution of manufacturing processes [1]. Never-
theless, despite the application of such preventive techniques, unfore-
seen failures can still occur during the operation of manufacturing
systems.

A failure is an event in which some part of the manufacturing
system does not perform according to its operational specifications. As a
consequence, production is disrupted and production targets may not
be reached. The gap between the resulting state and the intended state

is a production problem. When a production problem appears, a pro-
cedure to analyze the problem in detail and generate a solution is
needed. Several systematic methods such as PDCA, OPDCA, DMAIC,
PROACT, Shainin, Kepner-Tregoe, and Eight Disciplines (8D) have been
developed with that aim in mind. Such methods are framed under
Continuous Improvement Process (CIP) and Manufacturing Problem
Solving (MPS) [2–6]. Arguably, 8D is the problem-solving method that
is more oriented to the resolution of production problems. Developed
by Ford Motor Company in the early 1990′s to support their plants and
suppliers in the problem solving activity, 8D comprises eight main
steps: (1) definition of a team, (2) description of the problem, (3) de-
finition of containment actions, (4) root cause analysis, (5) definition of
potential corrective actions and verification of effectiveness, (6) in-
troduction of corrective actions, (7) definition of preventive actions and
lessons learned, and (8) congratulate the team [8]. The knowledge and
experience of team members [9,10] are key elements to implement any
problem-solving method. These methods provide a structured process
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to facilitate the improvement and finding of solutions. Nevertheless,
although training is generally provided to team members, these
methods only bring good results when they are driven by actors with
enough experience who get additional support knowledge (e.g., pro-
vided by a software tool [9,10]). The literature also shows that the
industrial application of PFMEA is complex, time consuming, and in-
efficient [11]. In addition, it provides a low outcome, its results are not
revised during regular continuous-improvement activities, and there
are issues to keep an efficient feedback [11]. Part of the problem with
PFMEA relates to the fact that it is based on a spreadsheet approach,
which makes it difficult to reuse results and identify similarities [11].

This paper proposes a Knowledge Management (KM) approach that
aims to:

• Facilitate the reuse of PFMEA analysis results.

• Facilitate the capture and reuse of data and knowledge of manu-
facturing processes, at shop floor level, in any manufacturing plant,
during daily MPS activities linked to the Overall Equipment
Effectiveness (OEE) improvement. Among the different topics con-
sidered by OEE, the focus is set on quality issues with product and
processes (i.e. quality claims and scrap), abnormal production
speed, and breakdowns.

• Provide shop floor actors with a problem-solving software tool
based on the 8D method, which can be used even by users with very
low knowledge of the manufacturing system with which they work.

• Support manufacturing knowledge sharing and integration across
different manufacturing plants.

The proposed KM approach comprises the integration of the 8D MPS
method [8] with Case-Based Reasoning (CBR) [12,13] on an agent-
based distributed architecture with a Product Lifecycle Management
(PLM) system [14,15] and PFMEA [1]. The 8D method provides a
structured way to guide the resolution of problems step by step. CBR is
used as an artificial intelligence tool to search for similar manufacturing
problem cases collected previously in multiple locations. PLM is used as
a source of extended context information about Product-Process-Re-
sources (PPR) that will enrich the similarity calculation of the CBR
application. PFMEA is used as source of the initial set of cases to feed
the CBR application. One main contribution of this work is the in-
tegration of these four techniques: 8D method, CBR, PLM, and PFMEA.

The reminder of this paper is structured as follows. Section 2 con-
tains a literature review of the main topics related to this work: man-
ufacturing problem knowledge representation, PLM and CBR. Section 3
discusses the created models, which are the basis of the ontological
approach adopted to define the data structures needed to manage
manufacturing problem knowledge. Section 4 describes the developed
prototype application and its validation. The paper ends with the
conclusions and future works.

2. State of the art

2.1. Representation of manufacturing problems and PFMEA

Manufacturing problems need to be described in a consistent and
systematic way in order to allow for a common understanding by the
MPS personnel and an appropriate processing by a software system.
One way to address this need is by means of an ontology [16]. Litera-
ture shows proposals of different ontologies focused on manufacturing
related issues [17,18]. Manufacturing is a very wide domain and, de-
pending on the specific area of interest, ontologies comprise a variety of
manufacturing related concepts.

Chungoora et al. [18] propose a manufacturing core ontology with a
manufacturing planning orientation, which comprises concepts related
to product design and manufacturing processes and resources. The main
concepts are: PartFamily, DesignFunction, Feature, ProcessPlan, Man-
ufacturingMethod, ManufacturingProcess, ManufacturingResource, and

ManufacturingFacility.
When considering the representation of concepts dealing with MPS

and PFMEA, Kamsu-Foguem et al. [19] propose an ontology based on
conceptual graphs to formalize knowledge in an experience feedback
process. However, PFMEA concepts are not supported. Experience
feedback is considered a relevant approach to support MPS with lessons
learned formalized knowledge. The ontology comprises the following
main concepts: feedback_object, experience_element, experience, action
and attributes. The ontology also includes their corresponding specia-
lizations: activity, product, process, resource, competency, solution,
context, analysis, event, positive_event, and negative_event. Scippa-
cercola et al. [20] propose the use of SysML to create a system model
where artifacts contain FMEA related information. The FMEA in-
formation is represented as a description of the logical states of the
input flows, blocks, and their corresponding constraints. A transfor-
mation translates the annotated FMEA SysML model elements into facts
and rules of a Prolog base. A Prolog engine queries the created model to
derive FMEA results. Ebrahimipour et al. [21], Dittmann et al. [22], and
Mikos et al. [23] present three examples of ontologies to support FMEA
concepts, with the aim of facilitating the reuse of information stored in
FMEA analyses.

Ebrahimipour et al. [21] propose an upper ontology where three
concepts related to FMEA information (i.e., deviation, cause and con-
sequence) are modeled as an event and activities. A deviation is mod-
eled as an event, which is the beginning of a consequence. A con-
sequence is an activity. A cause is an activity that causes a deviation.

Dittmann et al. [22] propose a ROOT_CONCEPT class that is spe-
cialized into seven subclasses: FMEA, Component, Function, Fail-
ure_mode, Control_method, Risk_priority_number, and Contain-
ment_action. They also propose a set of relationships among the classes.
For instance, the “fulfills_a_function” relationship relates a Component
to a Function, and “has_failure_mode” relates a Function to a Fail-
ure_mode. The classes Component and Function have associated taxo-
nomies.

Mikos et al. [23] use the standard SAE J1739 and AIAG FMEA Re-
ference Manual to define a PFMEA ontology. In addition to the PFMEA
concepts modeled as classes (LocationOfFailure, PotentialCausesOfFai-
lure, PotentialEffectsOfFailure, EndEffect, LocalEffect, PotentialFailur-
eMode, and FMEADescription), the ontology seems to support the
concepts of product, process, and function.

After reviewing the mentioned ontologies, the works from
Chungoora et al. [18] and Dittmann et al. [22] were taken as reference.
Section 3.2 explains the selected concepts that were adopted and the
new concepts that are proposed, which are part of the contribution of
this work.

When analyzing a manufacturing problem, it is important to know
the context where it happens. The context information can be struc-
tured into three main areas: product, process and resource (PPR). PLM
systems are considered the main source of PPR information. Therefore,
the ontology must consider concepts managed by such systems.

2.2. Product lifecycle management as data repository for manufacturing
problem solving

A PFMEA analysis is performed in a specific process and, thus, the
information to be used is restricted to the components of that process.
The identified potential failure modes relate to a specific manufacturing
context, i.e. process, process step, machine, tooling, process parameters,
and product manufacturing feature. Therefore, it is necessary to com-
pare the context where a manufacturing problem occurs with the con-
text of each existing PFMEA analysis in order to evaluate their simi-
larity. In that way, PFMEA knowledge can be reused to assist in the
solution of a specific manufacturing problem. The context of the pro-
blem can be described in the form of PPR data, which sets clear dif-
ferences among problems. Lundgren et al. [11] consider PFMEA as part
of the quality assurance activities and end up using a similar approach.
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The use of digital models (comprising product design, process design
and manufacturing information) enables an approach where process
planning and quality assurance can be performed in an integrated way
and where already-created information can be reused [11]. PLM is the
main software system to support interoperable PPR digital models.

The use of a PLM system, as a central repository of data and as part
of a Lessons Learned System (LLS), is also the approach adopted by
Bertin et al. [24,25]. Their work focuses on the capture and reuse of
knowledge along the Engineering Change Request (ECR) process. A
change request is considered as an event and comprises a description
and the proposal of feasible solutions. Applying a problem-solving
method, an event is treated as a problem and its description comprises
the following main information: complexity, criticality, resolution
process and involved resources, root causes with justification, solutions
with rationale, implementation actions, and planning. The exploitation
of the capitalized knowledge is based on the search of LLS cards stored
in the PLM system. The approach aims to improve the decision-making
process of technical staff leading ECR processes.

Having reviewed ways of representing a manufacturing problem
and the main repository for manufacturing problem context data, the
next section reviews CBR as the artificial intelligence tool to support the
search for solutions in an MPS process.

2.3. Case-based reasoning and manufacturing problem solving

Having access to prior problem cases may help when trying to solve
an unforeseen manufacturing problem. CBR is particularly applicable to
problems where earlier cases are available. CBR is also useful when the
reality under analysis is too complex and difficult to be represented in a
single model [12]. This is the case of manufacturing, with a huge
variety of production processes that are impacted by many types of
machines, environments, materials, methods, and personnel. Therefore,
similarity determination between the current problem and the problems
contained in the case base is an important factor. The previously
mentioned manufacturing problem context data, which is stored in the
PLM system, is proposed to enhance the similarity calculation.

Note that the adoption of CBR to assist during MPS activities is
complementary to the use of predictive methods. For instance, the ap-
plication of machine learning techniques, based on the analysis of big
amounts of collected data, to make predictions in process monitoring
and predictive or condition-based maintenance [26,27].

Manufacturing, as an application domain, represents also a big
challenge for CBR due to its vast extension and potential amount of
cases. A single case base containing information related to failures from
hundreds of different types of processes, coming from many different
manufacturing lines and plants, would create serious problems of re-
trieval speed and maintainability. Multi-case base reasoning systems
were created years ago to address these types of issues [28]. Among the
different approaches, and due to its flexibility about knowledge mod-
ularization, SEASALT (Shared Experience using an Agent-based System
Architecture LayouT) [13] was selected for this work. SEASALT is a
domain-independent architecture for extracting, analyzing, sharing,
and providing experiences. SEASALT is based on the CoMES (Colla-
borative Multi-Expert-System) approach [29].

A relevant example of the CBR application in problem solving is the
work of Reuss et al. [30] in an aircraft diagnose and maintenance
context. They proposed a multi-agent system to assist in finding the root
cause of a fault and providing maintenance suggestions. The system is
based on the SEASALT architecture and uses post-flight reports, which
contain faults occurred during flights, as main data source.

Mikos et al. [23] proposed a slightly different approach to PFMEA
knowledge sharing and reuse to support the resolution of problems.
Their approach, similar to SEASALT, is also based on a multi-agent
architecture. They use RacerPro as the description logic reasoning en-
gine for the inference service and knowledge retrieval. RacerPro pro-
vides the language nRQL to query a knowledge base compliant with an

OWL (Ontology Web Language) ontology. The knowledge base is po-
pulated with PFMEA analysis cases. Given a potential failure mode the
system seeks to retrieve all the linked potential end effects of failure and
the potential causes of failure present in the PFMEA knowledge based.

Based on the introduced theoretical background, the next section
presents the proposed models used to represent knowledge about
manufacturing problems and to develop a software system to support
MPS at shop floor level. The proposal integrates 8D, Case-Based
Reasoning (CBR), Product Lifecycle Management (PLM), and PFMEA.
8D is used as an MPS method [8]. CBR [12] on an agent-based dis-
tributed architecture [13] is the artificial intelligence tool in charge of
searching for similar manufacturing problem cases. The PLM system
[15] contains the source of extended context information to enrich the
similarity calculation within the CBR application. Finally, PFMEA [1] is
involved as a preventive technique to create an initial set of potential
manufacturing problem cases. This approach provides a wider and
improved approach to manufacturing problem solving when compared
to works identified in the literature. The work of Mikos et al. [23] is a
PFMEA oriented solution where a potential failure mode is used to
search for potential causes. The case base is limited to PFMEA, shop
floor level problems are not fed into the case base, manufacturing
context information is not considered to identify similar cases and the
connection with a PLM system is not addressed. The work of Reuss et al.
[30] uses the same CBR agent architecture and focuses on aircraft
maintenance where faults are documented in post-flight reports. The
use of PFMEA or any other manufacturing related preventive technique
is not considered to feed the case base. The use of extended context
related information to enrich the similarity calculation is not addressed
either. Therefore, the connection to an additional software system, such
as a PLM system, to enrich the search for solutions is out of its scope.

3. Developed models

3.1. Manufacturing problem solving process model

Following Toyota’s production philosophy, the approach adopted in
this work considers that an MPS process is embedded within a
Continuous Improvement Process (CIP) cycle. Within a CIP cycle, a
shop floor employee may compare the current condition of a given
manufacturing process with its defined target condition. When the
target is not reached, there is a production problem [4]. That situation
is the starting point to execute an MPS process. Following an MPS
method, a team should analyze the problem. The 8D method is an MPS
method widely applied in industry [7,8]. When aiming to develop a
software system to assist along an MPS process, it seems logical to
consider a method that is already known by the employees in order to
prevent an initial user rejection of the system. That is precisely the
reason for selecting the 8D method in this work. The aim of the software
system is to support the MPS process by guiding the employees/users
through the eight steps of the method, providing additional information
about the problem under analysis and knowledge related to possible
solutions, and collecting the knowledge created during the process
execution for reuse purposes. Fig. 1 shows the proposed MPS process
model, which comprises eight main steps:

1. The user introduces a basic description of the manufacturing pro-
blem. Taking the Kepner-Tregoe method [31] as reference, the user
should provide an answer to the following basic questions: ‘What?’
(a brief description of the problem), ‘When?’ (date and time), ‘How
often? (frequency), ‘Where?’ (this question is divided into three
different attributes related to the line and station where the problem
happens, and the product that is being produced), ‘Who?’ (op-
erator), and ‘Why?’ (a brief description of why it is a problem).
‘What?’ and ‘Why?’ are implemented as free-text fields that may
contain extended information about the problem under analysis,
which could be useful for other users in the future to understand it
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better. However, they are not used in the search for possible solu-
tions. For the rest of questions and to ensure consistency and proper
understanding between humans and machines, the Graphical User
Interface (GUI) provides drop-down menus (Fig. 4). Where the user
can select the most appropriate value. The available values are
based on the ontology that will be presented below. The selected
drop-down menus method also ensures that the time for the op-
erator to give input to the system remains between one and two
minutes maximum.

2. Given the answer to the basic questions, a subsystem searches and
collects extended information related to the problem from the PLM
system. The extended information comprises: process, machine,
material, man, method, and environment. It is assumed that product
manufacturing processes were digitally designed and that detailed

digital information of processes and resources is stored in a PLM
system (PPR data). This approach allows reusing manufacturing
information that was created in the development phase to extend
the information input by the user. This helps avoid situations where
the user could not know all the details of the process due to a lack of
experience. The output of the PLM comprises individual attribute
values related to the problem context, for instance, process tem-
peratures, process pressures, suppliers’ name, and scrap level of the
machine under evaluation (Fig. 5).

3. Combining the input from the user and the data collected from the
PLM, a subsystem creates a global query to search for possible so-
lutions. This global query is a list of attributes describing either the
problem itself or the context of the problem. All these attributes are
analyzed by the CBR subsystem. It then calculates their individual

Fig. 1. Process model of the proposed system.
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similarity level relating the existing case base with manufacturing
problem cases collected before. All calculated individual similarity
values are merged in a global similarity result based on predefined
system of weights, and this final value is used to identify the most
similar cases that can be used as a solution proposal. The initial case
base of the CBR system contains the result from PFMEA analysis
conducted during the process development phase, and it is extended
continuously later on in the step 8 of this MPS process. Sections 4.2,
4.3, and Fig. 6 explain with more detail all these sub-steps.

4. As a result, the CBR subsystem proposes possible containment ac-
tions and problem causes to the user (i.e., failure modes in the FMEA
terminology).

5. The user must check the proposed failure modes or causes at the
manufacturing line or station where the problem was identified and
give feed-back to the system whether any of them is similar to the
problem found. This step requires of a conversational CBR method.
For this purpose, the approach from Becerra-Fernandez et al. [32]
was selected. Following conversational CBR loops, failure cause
after failure cause, the system guides the user down through the
whole chain of causes until the very last root cause of the problem is
identified. This step can take from a few minutes up to several hours.
Its duration will depend on two factors. First, on how close to the
real problem is the cases proposed as possible solution by the MPS
system. Second, on the time needed by the operator to evaluate
them in the machine.

6. Once the possible root causes are identified, the system provides the
stored corrective and preventive actions. The user checks them and
decides to apply, reject, or adapt them. This initial developed model
does not consider an automatic adaptation process done by the CBR
system itself, leaving this complex step of the CBR cycle [12] for
future research. This step can take from just minutes (for easy re-
pairs) up to months (when spare parts are not available or new
devices have to be integrated in the machine to avoid quality is-
sues).

7. As part of the lessons learned step, the user gives feedback to be
analyzed by a Knowledge Engineer.

8. When appropriate, a Knowledge Engineer will update the CBR
subsystem to extend the case base.

3.2. Manufacturing problem solving knowledge model

The proposed system is made of three main subsystems: an in-
formation input/output and coordination software unit, which provides
the main Graphical User Interface (GUI), a PLM software application,
and a CBR software application. The information to support the MPS
process has to be managed by these three applications. The first step is
to define which concepts are required by the MPS process.

This section presents a proposal for an ontology to represent MPS
knowledge. Several constraints were considered in the development of
the ontology. It should support any kind of manufacturing process and
any location where a manufacturing process takes place. It should be
compatible with the information structure of the PFMEA method. It
should comprise concepts to describe different aspects of a manu-
facturing problem and concepts to be used for case similarity de-
termination. A candidate concept for similarity determination requires
to have a wide range of possible values depending on the manu-
facturing context to set differences among problems.

As it was mentioned in Section 2.1, the work from Dittmann et al.
[22] was taken as the starting point. The proposed ontology takes the
concepts: Component, Function, Failure, and some of their inter-
relationships. These three concepts will contain the core classification
of a problem in the same format as a PFMEA [1], which will be used by
the CBR system as main criteria to calculate similarities among pro-
blems. Dittmann et al. [22] proposed that a taxonomy should be asso-
ciated to each of the three concepts, and consider any predefined one as
a candidate. In the ontology proposed in this work, only the concepts of

Component and Function have associated taxonomies, and both taxo-
nomies correspond to the concepts defined by the PFMEA method [1].
The main differences with the approach from Dittmann et al. [22] are:

• The taxonomy of Component is flat and comprises six elements:
Process, Man, Machine, Material, Method, and Environment.

• The taxonomy of Function has at its first level five elements re-
presenting the main functions that a component can fulfil: Measure,
Control, Make decision, Modify, and Be within specification. Each of
these five functions is extended into lower levels. The last element
“Be within specification” is needed as type of function because the
PFMEA method considers everything as components that fulfil
functions, and then it helps to analyze the different ways in which a
function can fail. In this sense, the requirement of being within a
defined specification is considered from a functional point of view.

• The concept of Failure is modeled differently. A failure has the at-
tribute ‘Fulfilment rate’, which represents the grade of fulfilment of
the associated function that the associated component is able to
deliver in the problem under analysis. This attribute can get a value
from a list of predefined values that starts at 0% and goes up to
200%.

• The concept Problem was added to the ontology to provide the link
to a unique trio of Component, Function and Failure.

• The concept Context was added to consider the environment of the
problem.

The following example aims to illustrate these basic concepts: a
pneumatic cylinder (Machine) with a function to move something
(Modify > Modify position > Transport) will have a Fulfilment rate
of 0% if it doesn’t move at all, or of 200% if it moves much faster than
specified. Any value in between will represent a cylinder moving either
slower or faster than specified. This is a subjective attribute, whose
value depends on the perception of the employee when no quantitative
measure is available. An employee may consider that a function is
fulfilled at 25% while another may consider it fulfilled at 32% or at
23%. An exact number is not actually needed; instead, an approximate
value to be used in the similarity calculation is all that is needed. For
that reason, the allowed values of the attribute are defined as a list,
which provides a guidance to the employee. The value 100% is not
included in the list because this would mean that the function is ful-
filled and thus there is no problem. The proposed ontology is re-
presented using a lightweight UML class diagram (Fig. 2).

The reason behind adopting a different approach from Dittmann
et al. [22] regarding the taxonomies of Component, Function and Failure,
is the need for facilitating the calculation of similarities among pro-
blems. A Component taxonomy with more levels (i.e., with more than
one level) would create an overlap of information with the taxonomy of
Function. That overlap could affect the similarity calculation and the
retrieval of similar cases within a CBR system. For example, a Compo-
nent of a hypothetical subtype ‘component > process > stamping’
modifies the shape of a metal sheet. This Component is linked to a
Problem that has an associated Function of subtype ‘function >
modify > modify material > modify shape’, that does not add any
additional information. Opposite, both parameters with same in-
formation will reduce the probabilities that the CBR system is able to
associated this query with applicable cases from a Component of a hy-
pothetical subtype ‘component > process > extrusion’, which is also
related to the function ‘function > modify > modify material >
modify shape’, and which could bring valuable solutions to the user.
The use of a taxonomy with the class Failure is very similar. In PFMEA,
failures relate to unfulfilled functions (e.g.: Function 1= ‘metal sheet is
drawn 20 mm’/Failure 1= ‘metal sheet is not drawn’/Failure
2= ‘metal sheet is drawn less than 20 mm’/Failure 3= ‘metal sheet is
drawn more than 20 mm’). Therefore, a taxonomy would not add re-
levant information, and the degree of fulfilment can be better re-
presented with a percentage value.
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The proposed model should be aligned with the definition of pro-
blem according to MPS. Opposite to PFMEA, it considers a problem as a
specific and unique failure happening in a specific and unique function
that belongs to a specific and unique component. Therefore, the class
Problem was added to the ontology to provide the link to a unique trio of
Component, Function and Failure. This approach reflects one of the main
differences between PFMEA and MPS. While in PFMEA each failure
mode can belong to different functions that at the same time can belong
to different components, in an MPS situation an employee faces a
specific and unique problem (i.e., failure) that comprises a single
combination of component, function and failure. For example, in a ty-
pical PFMEA approach a component pneumatic cylinder can have the
functions of being tight, moving forward, and moving backward. The
first function may fail by leaking between chambers, or by leaking to
the outside. The next two functions may fail by moving too fast, too

slow, or not moving at all.
Usually, a top-level general problem is created by a lower-level

more-specific problem. This relationship between a problem and its
lower-level creator is represented by the relationship ‘is created by’ in
the class Problem. The class Problem has also different attributes to re-
present the basic description of a manufacturing problem, as mentioned
in Section 3.1. Each attribute has an associated taxonomy defining
possible values. This approach helps calculate the similarity among
problems (e.g., problems originated in the same production line should
have a higher similarity index than ones originated in other lines). The
definition of a problem, through the classes Component, Function and
Failure, helps classify a problem in a generic way while the attributes of
the class Problem define its details.

Although the mentioned trio of Component, Function and Failure
defines a specific problem, the exact same trio can be found in different

Fig. 2. Main components of the proposed ontology in a lightweight UML representation.
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manufacturing scenarios. For instance, a problem with an electrical
relay, which does not allow the flow of current when it is activated, is
linked to a component of type ‘machine’ with the function ‘modify >
modify flow > increase flow’ that fails by not fulfilling at all its
function (i.e., its Fulfilment rate is 0%). However, such a description of a
problem could refer to a small relay in an electronic board of a PLC
(Programmable Logic Controller) controlling micro-amperes or to a big
device in the control unit of a power station controlling mega-amperes.
To address this issue, the class Context was defined to add information
related to the environment of the problem. The work of Chungoora
et al. [18], as mentioned in Section 2.1, was taken as the reference for
the ontological definition of Context. In particular it was taken the
classes Method and Process, and three subclasses that specialize the class
Resource: Man, Material, and Machine. In order to match the six com-
ponents of the PFMEA, the class Environment was added to the model.
The directions of the relationships among them have been adjusted to
facilitate the search for information in the PLM system. The subclass
Event has been included to add valuable information related to special
events that may occur before a problem is detected (e.g., change over,
change of the production shift, or restart of the production after a
weekend). The Event subclass is relevant in the problem similarity
calculation. It was realized by observing how experts conduct an MPS
process. Experts usually start the investigation by requesting informa-
tion about any relevant event that happened just before the problem
occurred. The class Context has seven subclasses, as the class Compo-
nent, and has an associated taxonomy represented through a relation-
ship type “is part of” pointing to itself. The subclasses of Context have
many different types of associated attributes, which are used to specify
every type of technical information of the context (e.g., pressures,
temperatures, and dimensions). These attributes are used in the con-
figuration of the PLM system to store PPR information explicitly.

Finally, the class Solution contains information about the solution to
the manufacturing problem. This class contains information related to
the containment, corrective, and preventive actions applied to solve the
problem. This information is not used in the similarity calculation.

3.3. Manufacturing problem solving system architecture

From an IT perspective, the proposed process model is based on the
mentioned SEASALT multi-agent architecture [13]. Fig. 3 shows its
application to the proposed MPS system. The proposed MPS system
architecture supports the deployment of the different agents across the
different manufacturing plants of a company (hereafter referred to as
locations). Within each location, it supports the deployment across the
areas with different manufacturing processes or production units. In
this way, each agent hosted in a specific production unit of a specific
location will be able to communicate and interchange information with
all the other agents hosted in different production units and locations
through the company’s intranet.

The SEASALT architecture has been simplified, taking only those parts
that are relevant to this research. The simplification is based on the work
of Mikos et al. [23], who propose three different types of agents to manage
all needed functions around PFMEA knowledge interchange. The three
agent types correspond to the following ones in the SEASALT architecture:

• Individualized Knowledge Agent: it is responsible for capturing and
showing information to the user. In this work, the tasks of this agent,
defined in [13] and [23], are extended to include the collection of
context information from the PLM system to complete the definition
of a problem. There are as many agents of this type as users of the
MPS system.

• Topic Agent: it is responsible for calculating similarities through a
CBR application and proposing the best solution out of its specific
case base. There are as many agents of this type as production units,
and each of them is hosted in the central device of its corresponding
production unit.

• Coordination Agent: it is responsible for the communication co-
ordination among agents and the selection of the best solution
among the ones proposed by the Topic Agents. There are two types
of coordination agents. A global coordination agent performs a
global coordination role in the architecture among all connected
locations. A plant coordination agent performs the coordination of a
single location. It takes as input a Knowledge Map containing the list
of the Topic Agents working in its location. There is a single global
coordinator and as many plant coordinators as locations. The global
coordinator is hosted in the central server of the company while the
plant coordinators are hosted in the servers of each location.

The Knowledge Representation module corresponds with the pro-
posed ontological model presented in the previous section.

The following section presents the application of these models in a
proof of concept MPS system prototype implemented in the multi-
national company Exide Technologies with the aim of testing and va-
lidating its functionality and capabilities.

4. Manufacturing problem solving system prototype

4.1. Development of the proof of concept prototype

The proposed models were used to develop an MPS system proto-
type. Two software applications were selected for the development:
Aras Innovator (partially open source) as PLM software and myCBR
(open source) as CBR system. Both systems were customized to support
the proposed MPS Process Model and MPS ontology. An initial stand-
alone prototype was created to perform a preliminary evaluation [33].

The MPS system prototype was programmed in Java. The three
different agent types (Individualized Knowledge, Topic, and
Coordination) were programmed to be launched in the JADE run-time
environment. myCBR, which is an open source piece of software de-
veloped in Java, was integrated within the Topic Agent code. The
communication with the PLM is done via HTTP between the
Individualized Knowledge Agent and Aras server, and is based on AML
(Aras Markup Language) messages. AML is the XML (eXtensible Markup
Language) dialect and language that drives the Aras Innovator server.

Fig. 4 shows the Graphical User Interface (GUI) of the developed
prototype system. The GUI shows a Problem Solving Sheet (PSS) that
guides graphically the user through the eight steps of the 8D Method.
PSS is very common in the industry. Therefore, typical users are fa-
miliar with it. Adopting such a GUI should facilitate the intereaction
with the users.

4.2. Configuration and initial case base of the MPS system prototype

The MPS system prototype was implemented in two manufacturing
plants, one located in Germany (Plant A) and one located in Spain
(Plant B). Wet Filling was the common manufacturing process selected
for the prototype testing. Wet Filling is a process for producing positive
plates for industrial batteries.

Staff from production and engineering in the German plant was
interviewed to identify the characteristics of the Wet Filling industrial
reality that make products, machines, processes, workers, and en-
vironments different from one another. These differences are the key to
distinguish a problem from another in the similarity calculation to be
executed by the CBR system. The information gathered in the inter-
views was: key elements, their relationships, and relevant attributes.

For the calculation of similarities the standard set of formulas
available in the selected software myCBR was used. myCBR provides a
GUI for modelling various kinds of attribute-specific similarity mea-
sures and for evaluating the resulting retrieval quality [34]. It follows
the local-global approach, which divides the similarity definition into a
set of local similarity measures for each attribute, a set of attribute
weights, and a global similarity measure for calculating the final
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similarity value. This means, for an attribute-value based case re-
presentation consisting of n attributes, the similarity between a query q
and a case c is calculated as follows (Eq. (1)) [35]:

∑ ⋅
=

wSim (q, c) sim (q , c )
i

n

1
i i i i

(1)

For the configuration of local similarities, it is distinguished be-
tween numerical attributes (representing technical specifications of
products, processes or environment) and the attributes with an asso-
ciated taxonomy. For the first ones, the similarity computation is based
on a mapping between the distance of the query q and the case c (Eq.
(2)) [35]:

simi(qi,ci)= f(d(qi,ci))= 1− |ci− qi|/|Max allowed value−Min al-
lowed value| (2)

For the attributes with an associated taxonomy, the similarity cal-
culation is based on the relative position of query and case values
within the taxonomy. For this purpose, the defined taxonomies are
enhanced in myCBR with position factors. Every inner node Ki of the
taxonomy is associated to a position factor Si ∈ [0.1], which is defined
based on experience and refined through trial and error. This factor
holds the following condition: if K1 >K2 then S1≤ S2. The deeper the
nodes are located in the hierarchy, the larger the similarity value can
become. The similarity between two objects is defined as (Eq. (3)) [36]:

⎧
⎨⎩

=ifK K
S K K otherwise

Sim (K , K )
1 1 2
1, 21 2

(3)

where S<K1,K2>denotes the position factor assigned to the node<
K1,K2> , i.e., the nearest common predecessor of K1 and K2.

For the configuration of weights for each local similarity result, it
was initially decided that the weight of the attributes describing the

problem (i.e., component, function, failure, and problem) was double
the weight of the attributes describing the context (i.e., man, machine,
material, environment, method and event). The aim behind this deci-
sion was that the problems with a similar definition, based on the
taxonomies, would be considered similar by the CBR system. And then
the context definition would be used as complement to distinguish the
closest cases to the query, with both problem and context definition
similar.

One of the aims of this work was the easy reutilization of potential
problems recorded in PFMEA analyses. In this case, the PFMEA of the
Wet Filling process was taken as the initial source of cases for the MPS
prototype case base. The initial set of cases was extended with problems
collected during one week in the Wet Filling shop floor of the Plant A.
For the evaluation phase of the prototype a total of 72 different chains
of problems (from visible problem to root cause) were recorded, which
corresponds with 226 individual problems (each chain of problems
comprises several individual problems).

4.3. Case Studies and Validation of the MPS system prototype

For the first validation step of the prototype system, the Wet Filling
production area in Plant A was selected (Case A). Case A represents the
lowest level of complexity for the system, since the cases were all col-
lected in this process and plant, as described in the Section 4.2. The Wet
Filling production area in Plant B was selected for the second validation
step of the prototype system (Case B). Case B represents a higher level
of complexity for the system, since it occurs in a different manu-
facturing context (the plant) than where the knowledge was collected.

The types of problems in both plants can be quite different (e.g.,
machines can be different, some materials are bought from local sup-
pliers, and personnel have different levels of training and experience).

Fig. 3. Proposed MPS system architecture based on SEASALT.
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Finally, for the third validation step of the prototype system, the
Casting production area in the Plant A was selected (Case C). This Case
C represents the highest level of complexity for the system, because the
case base did not contain any kind of problem from this area and the
PLM was not set up with data about this area either. In the three cases
the corresponding group leaders were trained and used the system to
solve ten problems that arose during their shifts. Queries, results, and
real solutions were all recorded for a detailed analysis and evaluation
afterwards.

When the user introduces the initial definition of a problem through
the prototype GUI (Fig. 4), the individualized knowledge agent hosting
the interface uses this information to send queries to the PLM system
and collect all the associated context information. Initially, and based
on the user input information related to line, station, product, and date
of the problem, this agent retrieves the IDs (IDentification numbers) of
the PLM items that were related to machine and product involved in the
problem under analysis and that were active in the PLM in the given
date. With these two IDs, the agent can extract the ID of the rest of
related items (i.e., man, process and environment). When the items’ ID
are known, the individualized knowledge agent is able to place queries
directly on each selected item and extract all the information linked to
it (e.g., supplier of the machine, experience of the operator, or max-
imum casting temperature). Fig. 5 shows an example of query and
answer based on the language AML of Aras. Because the basic com-
munication channel among agents defined in JADE are Java Strings, the
individualized knowledge agent puts together all the collected para-
meters into a single string (i.e., the user query data plus the PLM ex-
tracted context data). This is done by using a tag language similar to

HTML (Fig. 6). Then the individualized knowledge agent sends the
created string to the coordination agent, which distributes it simulta-
neously among all the existing topic agents. Each topic agent extracts
the query parameters from the string and uses them to retrieve solutions
from the CBR application hosted in the agent. The best proposed so-
lutions, together with their corresponding similarity percentage related

Fig. 4. Problem Solving Sheet GUI of the prototype MPS system.

Fig. 5. Example of query and PLM answer based on AML.
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to the query, are built again into a string using the same tag language.
The created string is then sent to the coordination agent. This co-
ordination agent consolidates all the answers from the different topic
agents and selects the proposals with the highest similarity values. It
puts all top proposals together in a single string (Fig. 6), and sends it to
the individualized knowledge agent, which extracts the information
and shows it to the user through the GUI (Fig. 4).

The Table 1 shows the results extracted from the three cases. The
table is divided horizontally in three blocks corresponding to Cases A,
B, and C. The table is divided vertically into three blocks, which cor-
respond to the three consecutives improvements done with the simi-
larity parameters of the CBR system. Finally, the table shows, for each
problem, the similarity percentage of the proposal given by the system
to each user query and the codes to interpret the result.

• −1= the MPS system proposed some solutions but none of them
were useful because the case base did not contain useful cases. This
represents a failure of the MPS system due to lack of knowledge.

• 0= the MPS system proposed some solutions but none of them were
useful. Nevertheless, in the case base, there was one suitable case at
least. This represents a failure of the MPS system due to a failure in
the similarity calculation.

• 1= the MPS system proposed at least one solution that could be
directly used without any major adaptation (i.e., the proposal comes
from an identical or very similar context).

• 2= the MPS system proposed at least one solution that could be
used after an adaptation process done by the user (i.e., the proposal
comes from a different context).

Initially the system was configured to give to the user just three
proposals of solution, because it was considered that if the three most
similar proposals from the agents do not match, the better would be
that the user proceeds to reformulate the query. The results from the
first trial are interpreted as follow:

• 80% of the proposals in Case A were suitable, having most of them
code 1 (i.e., directly useful without adaptation). This result is ob-
vious, since the case base was populated with problems coming from
this area.

• Only 60% of the proposals in Case B were suitable, having most of
them code 2 (i.e., adaptation was needed). A high level of adapta-
tion is considered normal since the case base was populated with
problems coming from the Plant A, which implies a different man-
ufacturing context. Nevertheless, a 60% success rate is considered

too low.

• Only 10% of the proposals in Case C were suitable. This can be
explained because the PLM system was not populated with in-
formation from the area of this case. Therefore, most of the para-
meters to calculate similarity were empty.

The results from the first trial were not considered satisfactory. A
deeper analysis of the CBR similarity configuration was considered
necessary to optimize the success rate of the system. It was realized that
the selected strategy of weights associated to each attribute (see Section
4.2) was inadequate, since the number of attributes associated to the
context, which were extracted from the PLM system, was much higher
than the number of attributes associated to the user definition of the
problem. Therefore, even though the problem related attributes had
higher individual weights, all the context related attributes together
had a much higher impact into the similarity calculation. This made the
system perform well only when the problem under analysis had the
same context as any of the problems in the case base. To solve this issue,
the approach to weights was changed, grouping attributes into blocks
and giving them a total weight as a unit. The flexibility and visualiza-
tion of results in myCBR [34] helped in the identification and correction
of errors during the development of the system. The new configuration
was:

• 40% weight of total similarity result: core problem description (i.e.,
component, function, and failure). This gives a very high relevance
to these three parameters, which work with universal taxonomies
regardless of the context type, ensuring the retrieval of useful cases
from different contexts.

• 40% weight of total similarity result: core context description (i.e.,
process, man, machine, material, environment, method, and event)
and the parameters to define ‘who’ and ‘how often’. As with the
previous parameters, these nine parameters have also universal
taxonomies, ensuring the retrieval of useful cases from different
contexts. In this case, the 40% weight has to be split among nine
units, instead of three, having less impact at the individual level.

• 10% weight of total similarity result: line, station, and product.
These parameters have no universal taxonomy (i.e., they are specific
to each production unit). Thus, it is possible that the CBR system,
linked to agents working in different areas from the one where the
user is making the query, will not recognize them. Therefore, they
receive less weight.

• 10% weight of total similarity result distributed homogeneously
through the whole set of context technical parameters extracted

Fig. 6. Example of query and solution expressed in tag language.
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from the PLM system (e.g., pressure, temperature, dimensions, etc.).

The same queries were introduced into the system using this second
similarity configuration setup. The results are shown in the second
vertical block of Table 1. Cells filled in green color show queries with
improved results while those filled in red color show queries with worse
results:

• 70% of the proposals in Case A were now suitable. This represented
a setback when compared to the previous trial configuration. With
this configuration, the core description of the problem has more
relevance. Thus, the system is able to find many more similar cases
from different contexts and the probability of finding the proper one
within the three proposals delivered by the system is lower.

• 70% of the proposals in Case B were now suitable, which means a

Table 1
Results of cases A, B and C with different similarity configurations.
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10% improvement. The proposals demanding adaptation decreased
as well.

• 20% of the proposals in Case C were now suitable, which means a
10% improvement.

The similarity calculation done by the system with this second
configuration was considered right. However, the increase of re-
levancy given to the problem core description has generated that
many proposal given by the system are now linked to a unique
context. This effect is especially visible when the most similar cases
proposed by the system were initially collected from a PFMEA
document. It should be remembered that the goal of PFMEA is to
looks for all possible failure modes linked to each component in a
specific process (i.e. context). Since the system in these two initial
configurations was defined to give to the user only the three most
similar proposals, quite probably, it will only give information
about a problem from a single context. In the case that this context
is not matching with the one of the user, the system will not allow
other possibilities to show up. For this issue, the system was re-
configured to show the top ten out of all the agent proposals. The
new results are shown in the third vertical block of Table 1. Cells
filled in green color show queries with improved results related the
first configuration, while those filled in red color show queries with
worse results:

• 90% of the proposals in Case A were now suitable, which re-
presented an improvement of 10% in comparison to the first trial
and of 20% to the second one.

• 80% of the proposals in Case B were now suitable, which re-
presented an improvement of 20% in comparison to the first trial
and of 10% to the second one.

• 20% of the proposals in Case C were now suitable, which re-
presented an improvement of 10% in comparison to the first trial
and no improvement to the second one.

As it was mentioned in Section 3.2, the proposed model should
support any kind of manufacturing process and any location where
a manufacturing process takes place. Therefore, there are no theo-
retical limitations when it comes to its applicability within the
manufacturing environment. Nevertheless, the degree of utility of
the proposed model will be strongly limited by the availability of
useful cases stored in the case base. In terms of implementation, the
generality of the approach is improved when: the context depen-
dent taxonomies of the parameters used to define the problem (i.e.,
line, station, product and operator) is extended with data of any
new location, the generic data in the taxonomies of the classes
Function and Context is extended with enough detail to support any
new manufacturing scenario, and finally the PLM system contains
any new context related information.

5. Conclusions

The results obtained with the developed proof-of-concept
Manufacturing Problem Solving (MPS) system demonstrated the
feasibility of the approach adopted in this work. Its goal is to assist
shop floor manufacturing employees, such as operators or quality
inspectors, in the execution of MPS processes, which are char-
acterized by knowledge intensive activities heavily based on ex-
periences.

The main contribution of this work is its innovative production-
oriented approach to MPS by combining classic MPS methods with
CBR on an agent-based distributed architecture, and with a PLM
system. This novel approach had not been proposed in the reviewed
literature. The proposed approach integrates 8D, PFMEA (Process
Failure Mode and Effect Analysis), Case-Based Reasoning (CBR),
and Product Lifecycle Management (PLM). 8D is chosen as the MPS

method and PFMEA as a preventive technique to create an initial set
of potential manufacturing knowledge base. A CBR application, on
an agent-based distributed architecture, is chosen as the artificial
intelligence tool for searching for similar manufacturing problem
cases. Finally, a PLM application contains extended context in-
formation to enrich the similarity calculation within the CBR ap-
plication.

The application of the SEASALT architecture (Shared Experience
using an Agent-based System Architecture LayouT) [13] to an industrial
environment of production can also be considered as a contribution.

Another relevant contribution of this work is the ontological ap-
proach. It combines and extends existing ontologies from the PFMEA
[22] and manufacturing [18] environments to create a new ontology
able to represent manufacturing problems linked to production lines.
The proposed ontology supports at the same time the reuse of PFMEA
analysis results.

Future research and development work can be summarized as fol-
lows:

• The extension of the developed system with a connection to a
Manufacturing Execution System (MES) to incorporate auto-
matically context event information, such as change overs, starts of
shifts, or change of operators at the line.

• The development of the adaptation container in myCBR to have
automatic adaptation of the solutions proposed by the system to the
specific context of each query.

• The systematic record of manufacturing problems in the developed
system would encourage the development of applications to perform
a statistical analysis of the data (e.g., number of failures related to
specific components, number of failures where a specific supplier is
involved, number of failure of a type of machine component, etc.)
leading to analyzing the use of machine learning techniques to make
predictions and assist in decision making tasks.

• The extension of the use of the SEASALT architecture to include the
development of the Knowledge Source and the Knowledge
Formalization modules to extract knowledge from the PFMEA case
base automatically.

• The development of a multi-language dictionary to support the
parallel use of the system by users with different native languages.

• The use of semantic methods to collect information directly from
free text describing a manufacturing problem.
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