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A B S T R A C T

Manufacturing, through the Industry 4.0 concept, is moving to the next phase; that of digitalization. Industry 4.0
enables the transition of traditional manufacturing systems to modern digitalized ones, generating significant
economic opportunities by reshaping of industry. This procedure requires high-performance processes and
flexible production systems. The adoption of the Internet of Things (IoT) in manufacturing will enable effective
and adaptive planning and control of production systems. Towards that end, the proposed work presents a cloud-
based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance. The proposed
system demonstrated that it is possible to deploy a cost-effective and reliable real-time data collection, pro-
cessing, and analysis from the shop floor. It also demonstrates that such collected data can be used in an adaptive
decision making system, which includes a multi-criteria decision-making algorithm and a condition-based
maintenance strategy aiming to improve factory performances when compared to traditional approaches. The
proposed system consists of different modules (monitoring, adaptive scheduling, condition-based maintenance)
interconnected through the cloud-based platform, enabled by communication protocols under the Industry 4.0
and IoT paradigms. The proposed system is applied and validated in a real-case study from a high-precision
mold-making industry.

1. Introduction

Traditional manufacturing, through the fourth industrial revolution,
is transformed into a digital ecosystem [1]. In this transformation, the
Internet of Things (IoT) and the Cyber-Physical Systems (CPS) hold a
major role. The advent of modern technologies such as cyber-physical
systems, IoT, and the cloud technology open new horizons towards the
industrial digitalisation by enabling automated procedures and com-
munication by means that were not attainable in the past. Inter-
connected manufacturing systems and supply chains constitute an in-
tegrated whole that follows the System of Systems (SoS) paradigm [2].
In this context, the factory can be regarded as an ecosystem that is
composed of interconnected entities that refer to the resources such as
machine-tools and robots, the employees, the customers, the supply
chain partners and other stakeholders of the value chain, following the
idea of CPS [3].

Moreover, the integration of smart sensory systems, wireless sensor
networks, as well as industrial communication protocols will support
industries in adopting new ICT-based tools or to transform existing ICT-
based production systems into adaptive ones. The interfacing of ICT-
based systems with monitoring systems can provide the desired

awareness of shop-floor condition, which is necessary for the realiza-
tion of adaptive shop-floor planning and control. In parallel, the en-
abling technology of smart sensor networks can support in bridging the
current gap in information distribution [4,5]. Web technologies, and
especially cloud technology, can be used to establish integration in-
terfaces in between disparate IT tools and enable a common data flow.
Existing cloud-based applications in manufacturing have pointed out
that the use of cloud technology enables the ubiquitous access to in-
formation and minimizes investment costs, among other key benefits
that it offers [6].

To leverage the modern technologies towards the digitalisation of
contemporary manufacturing systems, this paper presents a cloud-
based cyber-physical system for shop-floor scheduling and control fol-
lowing the IoT and Industry 4.0 paradigms. The proposed system in-
cludes a monitoring system supported by a wireless sensor network.
The monitoring system collects information from different sources
(sensors, mobile devices, other IT systems) and analyses it through an
information fusion technique [7] in order to derive meaningful in-
formation. Industrial communication protocols as well as security me-
chanisms are implemented. The storage of the gathered information is
performed in a cloud server, along with the visualisation of the results
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to the end-user. The derived data are utilized as input in a scheduling
algorithm in order to perform adaptive scheduling. In addition to that,
the data is utilized as main input in a condition-based maintenance
approach [8] which is developed within the proposed work. Exploiting
cloud-based remote connectivity capabilities, the proposed system is
delivered under the Software-as-a-Service (SaaS) model that can be
applied in parallel in more than one manufacturers.

Modern manufacturing systems have to serve the increasing need
for heavily customized products and deal with turbulences on their
shop-floors which lead to increased complexity and difficulties during
decision-making [9]. One of the main current challenges in production
scheduling is the generation of efficient schedules under uncertainty
factors [10]. Towards that, the proposed architecture aims to support
adaptive scheduling taking into consideration not only monitoring data
from shop-floor but also data related to maintenance.

The structure of the paper is organised as follows. Section 2 deals
with the literature review on the technologies and the previous ap-
proaches related to the proposed cloud-based cyber-physical system.
Section 3 describes the proposed method followed in this paper. Section
4 presents the hardware and the software developments. In Section 5,
the case study where the cloud-based cyber physical system was eval-
uated is analysed. The results and the relevant discussion are presented
in Section 6. Finally, Section 7 concludes the paper.

2. State of the art

CPSs have been defined as “the systems in which natural and human
made systems (physical space) are tightly integrated with computation,
communication and control systems (cyber space)”[11]. CPSs link the
physical with the virtual world through flexible, cooperative, and in-
teractive operation [12]. In the context of CPS, complex and hetero-
geneous large-scale systems are integrated through the service-oriented
architecture (SOA), to deliver high performance and reliable operation
[13]. In the digitalised era, the quality of services plays a crucially
important role in meeting the emerging demands of customization and
personalization. The adoption of CPS in industry is defined with the
term Cyber-Physical Production Systems (CPPS) [3]. Towards the
creation of Industry 4.0 factories, a stepwise approach is introduced for
the design of CPS in manufacturing systems [14]. Moreover, the mod-
elling of CPPS can be performed by following commonly accepted de-
scription frameworks such as the EAST-ADL modelling language. Apart
from the connection with the tangible resources, the CPS can be ex-
tended with in-industry social media usage towards Social Manu-
facturing [15].

The physical entities enter the cyber world through microelectronic
devices and internet communication protocols following the IoT para-
digm [16]. Applications of Industrial IoT (IIoT) can empower the three
pillars of the modern industry, i.e. the process optimization, the opti-
mized resource consumption, and the creation of complex autonomous
systems [17]. The robustness of the existing industrial networks makes
them eligible candidates for several IIoT applications. Existing appli-
cations of IIoT have already demonstrated their potential in real-life
case studies [18]. A key enabling technology for the digitalization of the
modern industry is cloud manufacturing [19], as it enhances the in-
tegration of various industrial IT tools, and provides ubiquitous access
to information and flexible licensing models [6]. Two major challenges
that can decelerate the adoption of cloud manufacturing are the quality
of services and the intellectual property protection [20]. Security is one
of the main issues as different security protocols and standards should
be developed and used, increasing data security and enabling compa-
nies to share their data.

The CPS paradigm suggests the use of monitoring devices under the
IoT philosophy that goes beyond the traditional approaches for on-site
data collection, processing, and visualisation. The main requirements
for monitoring systems are to be robust, reconfigurable, reliable, in-
telligent and cost-efficient [4]. Various technologies of sensors can be

employed for monitoring purposes. In the case of measuring energy-
related operation characteristics, electrical current sensors are the most
appropriate as they are cost-efficient and non-intrusive in nature [21].
A relatively new approach for monitoring, relevant to the resource
awareness in the concept of CPS, is the machine-tool availability
monitoring [22]. Despite the fact that various topologies for the com-
munication of monitoring devices can be employed, in discrete manu-
facturing systems, the wireless sensor network topologies are the most
eligible candidates as they offer flexibility and scalability, especially in
environments such as the shop-floors [23][6]. A wireless sensor net-
work consists of a large number of wireless-capable sensor devices,
working collaboratively to achieve a common objective to increase or
reduce production KPIs [24].

The use of various and heterogeneous types of sensors in monitoring
systems requires specific manipulation of their output in order to ex-
tract meaningful information. This information extraction from various
sources is realised through information fusion methodologies [7]. In
1988, concerning the topic of tool wear estimation in machining, [25]
mentioned that the synthesis of system information can provide a
number of benefits in process monitoring, such as maximum amount of
information for making control decisions or reliable information during
the process. The information fusion architectures are referred to as
sensor level fusion, feature level fusion and decision level fusion [7]. In
the decision level fusion, the Dempster-Shafer (DS) theory of evidence
is mostly used, as in the work of [26], which aimed to identify the
condition of a diesel engine. The Analytical Hierarchy Process (AHP) is
coupled with the Dempster-Shafer theory in order to extract the cor-
responding weight for each source of information [21,27]. Several lit-
erature reviews have been performed regarding data fusion techniques.
One of them is performed by Castenado in [28], explaining the different
classification schemes for data fusion and reviewing the most common
algorithms. The last years, most of the data fusion techniques were
enhanced and enriched in order to deal with big data analysis. Zheng in
[29] presented a review of data fusion methodologies, classifying them
into different categories aiming to support the communities to find a
solution for data fusion in big data projects. Another interesting review
of Big Data analytics algorithms is presented by Ahmed et al., in [30],
emphasizing on their role in Internet of Things and presenting several
open challenges as future research directions.

Once the data are retrieved from the shop-floor, they are analyzed
and meaningful information can be provided to the IT production sys-
tems, transforming them from isolated to adaptive. Several approaches
have been reported in literature related to dynamic scheduling.
Chryssolouris et al. in, [31] proposed a dynamic scheduling approach
for manufacturing job shops using genetic algorithms and multiple
criteria evaluation of alternative schedules. Michalos et al. [32] present
a novel web-based tool for dynamic job rotation scheduling based on a
multi-criteria intelligent search algorithm. The development of a multi-
level adaptive control and scheduling solution for reconfigurable
manufacturing environments from a real-time system automation per-
spective is proposed in [33]. Solution approaches for real-time control
of manufacturing systems are also proposed by Monostori et al. in [34],
where a scheduling system integrated with production monitoring
subsystems is introduced to deal with common daily production dis-
turbances. Furthermore, another dynamic scheduling approach is pre-
sented by Kumara et al. [35] by modelling dynamic scheduling systems
as a virtual economy, where the “resource timeslots” are traded as
goods.

During the last years, a number of research works have also in-
troduced real-time scheduling. Subramanian et al. analyzed real-time
scheduling algorithms for coordinated aggregation of deferrable loads
and storage. In this study the authors compared three different sche-
duling policies and investigated their performance through simulations
[36]. Buyurgan and Saygin proposed a multi-criteria decision-making
algorithm for real-time scheduling and part routing solutions by im-
plementing pairwise comparison of possible future states of a

D. Mourtzis, E. Vlachou Journal of Manufacturing Systems 47 (2018) 179–198

180



manufacturing system [37]. Yan and Wang proposed a two-layer dy-
namic scheduling approach for a reentrant production line, considering
that all the parts have the same processing routes and need to be pro-
cessed on every machine [38]. Wang et al. in [39], presented a real-
time scheduling method based on timed Discrete Event Simulation
(DES) running on uni-processors. Although the proposed real-time
scheduling algorithm is interesting the shift towards digitalization and
Industry 4.0 paradigm, and the collection and analysis of real-time
measurements from IoT-based application for adaptive decision-making
remain main challenges for further research. Another approach of real-
time scheduling is presented by Zhang et al. in [40]. In this work, the
authors proposed a game theory based real-time shop-floor scheduling
strategy considering also cloud manufacturing. The paper implements a
dynamic optimization model considering data from one source, the
RFID sensors, however the parts regarding the data analysis and the
application in real-industrial environments are filed of further in-
vestigation. Although the last years there have been research work re-
lated to dynamic and real-time scheduling, it is hard to achieve effective
real-time scheduling due to the inefficient feedback of real-time in-
formation in the shop-floor as well as the gap between planning and
control [41]. The idea behind adaptive and real-time scheduling is for
the scheduling algorithm to become aware of the different information
coming from shop-floor, regarding suitability and availability of the
resources when performing assignments of resources to tasks, regarding
machine tools status, regarding human operator input, among others. A
mean to achieve that, is the effective integration between monitoring
and planning systems.

Moreover, the data captured by the monitoring systems can be
further used for condition-based maintenance of machine tools [42].
Among the main benefits of condition-based maintenance is the in-
creased uptime and as a result the reduced down time of the machine
tools. Moreover, the maintenance failures and as a result also the
maintenance costs can be reduced improving the overall equipment
performance [43]. Last but not least, condition-based maintenance
supports the increased efficiency of the maintenance management by
performing more accurate planning of maintenance activities. Pre-
dictive maintenance is one step forward, as it analyzes the data and
utilizes prediction algorithms to predict possible failures of machines
tool. Predictive maintenance gives the ability to ensure product quality,
perform just-in-time maintenance, minimize equipment downtime, and
avoid machine-tool failure [8,44]. A condition-based preventive
maintenance approach is proposed by Mourtzis et al. [45]. In addition
to that, a predictive maintenance platform is proposed by Efthymiou
et al. [46] for production systems maintenance, taking into considera-
tion data acquisition systems, knowledge management and a main-
tenance dashboard.

Several approaches have been proposed in literature related to
cyber-physical systems and control of manufacturing systems.
However, there are still fields of further research and investigation,
including real-time integration of different data from various sources,
real-time analysis and feedback from shop-floor, effective integration of
planning and control systems by incorporating communication stan-
dards and protocols that will allow interoperability, as well as advanced
scheduling algorithms that will be capable of tackling different pro-
duction changes of large variety and small batch size productions, and
also considers real-time information from maintenance system
[11,41,47]. Moreover, robust, reconfigurable, reliable, intelligent and
inexpensive monitoring systems need further investigation in order to
meet the demands of advanced manufacturing technology [4]. In ad-
dition to the above, although the last years, dynamic and real-time
scheduling algorithms have been introduced, most of them are con-
centrated in simulation scenarios and solutions and there are limited
approaches that consider the enabling technologies of Industrial IoT
and Industry 4.0 paradigms. The effective industrial application of ex-
isting approaches and their integration with various and different in-
dustrial systems is also a field of further investigation. Towards that

end, the proposed work presents a cloud-based cyber-physical system
for adaptive shop-floor scheduling and condition-based maintenance.
The present work aims to address real-time data acquisition and mon-
itoring from various sources, multi-source data analysis, integration of
planning and control as well as effective, accurate, and adaptive sche-
duling capable of dealing with real-time information from shop-floor.
To achieve that, the proposed system consists of different layers and
modules aiming to present not only an effective approach for adaptive
scheduling and condition-based maintenance but also a real im-
plemented system which considers the enabling technologies of IoT and
Industry 4.0 and is applied in a real industrial case. The proposed
system consists of a reconfigurable, reliable, as well as inexpensive
monitoring system that provides meaningful information to a short-
term scheduling algorithm, enabling adaptive scheduling. Moreover, a
condition-based maintenance approach for machine tools is proposed
based on the monitoring results and provided information. The mon-
itoring system consists of a wireless sensor network and is integrated
with industrial communication protocols and standards. The proposed
system captures the shop-floor condition (machine tools status, tasks
status) taking into account also the information from the condition-
based maintenance approach aiming to perform adaptive scheduling.
Finally, the proposed system is designed and developed in a cloud en-
vironment, as Software-as-a-Service, enabling collaboration, inter-
operability, as well as increased scalability by providing the resources
on demand, avoiding high investment costs. More specifically, the
module of the proposed system can be delivered as services through the
cloud environment upon user-request. The cloud environment includes
an infrastructure as a service (IaaS), virtual Linux machine, an Apache
Hyper Text Transfer Protocol Secure (HTTPS) server, a Ruby on Rails
framework (RoR), as well as a MongoDB database capable to handle
and analyse high volume of data. The main contribution of the present
work can be summarized below:

• An inexpensive and reliable monitoring system which integrates
data from different sources implementing also industrial commu-
nication protocols and standards following the Industrial IoT and
Industry 4.0 paradigms

• Data analysis algorithms that can easily identify the status of the
shop-floor and calculate important key performance indicators in
real-time

• An adaptive scheduling algorithm which consists of a multi-criteria
algorithm capable of taking into consideration in real-time various
data from shop-floor (machines, human operators, etc.) as well as,
input from condition-based maintenance performing accurate and
effective production scheduling and re-scheduling in real-time

• Implementation of the different modules of the proposed cyber-
physical system in a cloud environment, implementing also tech-
nologies for data storage and handling, and finally providing the
different modules (monitoring, scheduling, maintenance) as services
upon end-user request.

3. The proposed architecture

The paper proposes a cloud-based cyber-physical system for adap-
tive shop-floor scheduling and condition-based maintenance. The de-
veloped cloud-based cyber-physical system is designed and developed
under the IoT and Industry 4.0 concepts, in order to enable the digi-
talization of manufacturing companies in a cost-efficient, reliable and
robust way. Real-time sensing, interoperability as well as adaptiveness
were the main requirements during the system design and im-
plementation. Currently, most of the existing scheduling methods yield
non-feasible production schedules, since they are not aware of the ac-
tual shop-floor condition. Moreover, in many conventional manu-
facturing systems, the scheduling of jobs is done empirically using rules
of thumb. Such an approach nevertheless, leads to inferior utilization of
resources even in cases that the system is considered underutilized. In
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addition, it is also common practice for scheduling methods and tools to
assume a time-bucketed environment, with constant and inflated, and
thus unrealistic processing times [48]. As a result, awareness and
adaptiveness are main requirements to perform feasible schedule.

In this research work, the proposed cloud-based cyber-physical
system is designed and developed in order for it to contribute to the
overall adaptiveness of the system, as it is capable of monitoring the
production shop-floor, analyzing the monitoring data and utilizing
them as input in a scheduling algorithm as well as in a condition-based
maintenance approach (Fig. 1). Through the proposed system, an initial
schedule is dispatched in the shop-floor. The developed monitoring
system monitors the machine tools status as well as the progress of the
planned tasks. Once disturbances are detected, including machine
breakdowns, planned maintenance of machines tools based on the
condition-based maintenance approach, as well as extension of

processing time planned for the task, the monitoring system informs the
scheduling system on the shop-floor condition and the scheduling
system generates a new schedule which is then dispatched to the pro-
duction after its approval by the production engineer.

The developed cloud-based cyber-physical system consists of dif-
ferent components. More specifically, the proposed system consists of a
monitoring system that includes a wireless sensor network, and an in-
formation fusion technique and supports an industrial communication
standard Open Platform Communication-Unified Architecture (OPC-
UA). The monitoring system includes the sensors, the microcontroller,
the ZigBee protocol and the cloud gate way as hardware (inside the
physical shop-floor rectangular of Fig. 1) and also the database, the
information fusion technique, and the visualization of the meaningful
information (parts of the cyber-shop-floor rectangular of Fig. 1). More
specifically, t1he monitoring system has two main input data sources:(i)

Fig. 1. The cloud-based cyber-physical system.
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a wireless sensor network, (ii) the human operator of a machine. The
acquired data are analyzed through an information fusion technique
that consists of the Analytical Hierarchy Process and the Dempster-
Shafer theory of evidence [26]. Once the data are analyzed, meaningful
information including machine tool status, machine tool energy con-
sumption, utilization, availability, as well as actual machining time and
task status are provided to a scheduling algorithm in order to perform
adaptive scheduling. In addition to that, the analyzed data are used for
condition-based maintenance of machine tools. The proposed cloud-
based cyber-physical system is capable of monitoring the machine tools
as well as the planned tasks, and triggering the re-scheduling procedure
if any disturbance is detected in the shop-floor. Moreover, the status of
the machine tools and their availability are highly influenced by the
maintenance procedure, for that reason, a condition-based maintenance
approach is used in order to support the machine tool status identifi-
cation and reduce the machine tools breakdowns by measuring their
remaining operating time between failures.

Each one of the components of the proposed cloud-based cyber-
physical system is described in more details in the following subsec-
tions.

3.1. Cloud-based monitoring system

The main objective of the proposed system is to improve the
awareness on the shop-floor status. Most of the existing IT tools are
working in isolation without considering the status of the production
[4]. As a result, increased awareness of the production condition is of
high importance in order to avoid breakdowns and increase pro-
ductivity.

To achieve the aforementioned objectives, the system employs
sensors in order to measure the electrical energy related operating
characteristics of the machine-tools. The outputs of the sensors are
connected to a data acquisition device (DAQ) for each machine-tool.
The DAQs of a shop-floor are organised in a wireless sensor network
coordinated by a microcomputer gateway to cloud. In the last step of
the data transmission, a cloud-server is implemented for further data
processing and visualisation.

3.1.1. Data acquisition device
The design and development of the proposed DAQ are performed in

order to achieve an inexpensive, reliable as well as reconfigurable so-
lution for the industrial companies. In addition to the DAQ, a main
aspect of the proposed monitoring system is the connectivity (com-
munication protocols and standards). Different communication proto-
cols are applied to the proposed monitoring system in order to support
its connectivity and ensure the quick and accurate data transmission.

The DAQ of the proposed monitoring system, consists of sensors that
are installed in the machine tools. Current sensors are utilized to
measure the current of the main motors of the machine tools and the
overall energy consumption. In addition to that, the voltage of the main
network of electicity is measured through an insulation transformer.
Finally, an angular velocity sensor is considered, especially in the case
of the spindle, in order to identify its status. The currents sensors are
split-core transformers. The outputs of the current transformers are
sampled with a frequency of 1 kHz, which corresponds to 20 samples
per period (in the case of 50 Hz).

The developed DAQ needs to comply with the appropriate specifi-
cations for supporting the selected sensors, communication capabilities,
and computational requirements. Therefore, the STM32 F429 micro-
controller from ST Microelectronics was selected [49]. The micro-
controller has the ARM Cortex-M4 microprocessor at its core, and
special processing units for floating point arithmetic. The operating
frequency of 180MHz along with the special processing units give the
capability for real-time signal processing on the DAQ, which is essential
considering the sampling frequencies of the machine motor electrical
operating characteristics.

For the measurements of the currents of the machine, five axes
drives and the mains, six analog inputs for the split-core current
adapters are considered. Moreover, one analog input is specified for the
mains line voltage measurement and one digital input is specified for
the angular velocity sensor. The main benefits of the current transfor-
mers as sensing devices are that they do not require auxiliary power
supply for their operation and they can be acquired with low cost. Due
to the fact that the split-core sensors have a low frequency response of
60 Hz, an external analog-to-digital converter (ADC) is used instead of
using the embedded high speed ADC of the microcontroller. This ADC
has 8 analog channels and operates at 6 ksps that correspond to a
sampling frequency of 1 kHz for each split-core sensor. This corre-
sponds to 20 samples per one period of 50 Hz. The communication with
the microcontroller of the DAQ is performed via the Serial Peripheral
Interface (SPI) protocol.

3.1.2. Wireless sensor network (WSN)
The data acquisition devices, described in the previous section, are

organized in a wireless sensor network. The WSN follows the star to-
pology, and is facilitated with the use of DIGI XBee ZigBee RF module
[50]. The ZigBee module is a specification of the IEEE 802.15.4 stan-
dard, which operates at 2.4 GHz. ZigBee was selected over other wire-
less standards, due to its support to various network topologies and
encryption algorithms, and its robust and reliable operation with
functionalities such as collision avoidance, retries, and acknowl-
edgements performed in the hardware. Moreover, ZigBee modules can
communicate in ranges of more than 100m [51], enabling its appli-
cation in larger industrial cases.

In the WSN, the data transmission is organized by a central gateway
which is responsible for collecting all the data from the DAQs and or-
ganize them in packets in order to transmit them to the cloud server.
The DIGI XBee ZigBee is installed on the microcomputer-coordinator as
well as in all the DAQs. The data within the WSN are transmitted as
Zigbee packets, with a transmission frequency of four packets (each
packet has the required data for identifying the status of the machines
and calculating the performance indicators) per second that have un-
ique recipients (micro-computer-gateway). The developed WSN is de-
signed in a way that can also support a higher transmission frequency
following the needs of different industrial cases including automotive,
machining, and aerospace industry.

The main functionality of the proposed wireless sensor network, is
the automated addition and removal of data acquisition nodes to and
from the network. To support the adding and removing of nodes in the
WSN, a task sequence is developed. This automated procedure increases
the system’s re-configurability. To support that, a procedure is designed
and developed with four main steps (Fig. 2):

Step 1: Each DAQ node transmits a beacon message once every 5
seconds

Step 2: If a DAQ is in transmission range of a coordinator, the co-
ordinator receives the beacon message and verifies the DAQ address
with a list of registered DAQs. If the DAQ address is registered in the
coordinator, the coordinator transmits an “initiate communication”
frame.

Step 3: Then the DAQ abandons the beacon mode and waits for the
coordinator to request a measurements packet.

Step 4: Finally, the coordinator requests the measurements of each
DAQ once every 0.25 s and the operation of the network continues as
described.

In order to further increase the robustness and the reliability of the
proposed system, by avoiding network malfunctions due to problematic
devices or absent nodes, a mechanism is implemented into both the
DAQs and the coordinator devices (Fig. 2). Firstly, a scorecard is de-
fined, through which the system can monitor and control the network
malfunctions. The coordinator sets a specific flag when a request for
packet is sent to each DAQ. If the DAQ fails to reply before the begin-
ning of the next cycle of requests by the coordinator, the latter adds the
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value ‘1’ to a scorecard of the corresponding DAQ. In the case of a
successful reply by the DAQ, the coordinator subtracts the value ‘1’
from the sum in the scorecard. If the score of each DAQ reaches the
value of 20, the coordinator perceives this node as offline and stops
requesting the corresponding measurements. On the other side of the
network, the DAQ, which is not in the status of beacon and commu-
nicates with a microcontroller, monitors the presence of the coordinator
following a similar algorithm. The DAQ has a scorecard for the co-
ordinator and adds the value of ‘1’ to the sum if the coordinator does
not send a request for measurement in the expected timeframe of 0.25 s.
In the case of successfully receiving a request for measurements, the
DAQ subtracts the value ‘1′ from the scorecard. When reaching the
score of twenty, the DAQ considers the coordinator absent and re-enters
to beacon mode.

The presented monitoring system is designed and developed in
order to be cost-effective and affordable for SMEs. In this direction, the
overall cost of the data acquisition device and the wireless sensor net-
work is about 70 Euros per machine tool. Considering also a micro-
computer gateway for every 8 machine tools which cost is about 100
Euros, we can estimate a cost of about 660 Euros for 8 machine tools
which is much lower than existing commercial solutions.

3.1.3. OPC-UA connectivity
The adoption of the OPC-UA standard in the monitoring module is

selected as a mean for interoperability with other IT tools in the pro-
duction. The OPC-UA standard has been identified as a key enabler for
the realisation of the Industry 4.0 factories of the future [52]. In brief,
the OPC-UA represents a safe, reliable platform-independent industrial
communication standard. Following the CPS paradigm, OPC-UA pro-
vides an object-oriented concept to model the physical objects and their
interrelations. Therefore, the information flow within complex in-
dustrial IT systems is improved towards the realisation of adaptive ICT.
The OPC-UA network stack is implemented on top of the TCP/IP
transport layer of the OSI model. By implementing the application layer
in a platform-independent way, integration of heterogeneous data from

various sources can be implemented without the need for specific
software adapters. Two transport protocols are currently supported; the
UA TCP with UA Binary encoding to satisfy the need for high speed
communication; the HTTP communication Soap Web-Service with XML
encoding for Web-based applications. In this work, the OPC-UA with
binary encoding is selected to support high data throughput.

The OPC-UA standard was considered in this work in order to
support machine-to-machine communications (M2M), where machines
communicate with machines, workpieces and components to create an
adaptive and decentralised production system. This can be achieved by
enabling the machine to contain all the information related to its set-
tings or operation. Hence, this information can be shared directly with
the automation level, reducing the complexity of integrating software
from different vendors (Fig. 3). The OPC-UA communication takes
place in parallel to the real-time communication that occurs between
the developed DAQ and the sensors on the machine. OPC-UA is im-
plemented in the microcomputer gateway and all data are provided to
the shop-floor layer. The standard is complementary to the developed
cloud server, which acts as the shop-floor database.

Based on the design of the system, the developed namespace is
presented in (Fig. 3). The root node is the shop-floor which is the parent
node for the machines. The components of the machine are depicted as
nodes and the hierarchy is declared with the OPC-UA reference “Has-
Component”. The “HasComponent” reference is applied also in the case
of the variable nodes. The components of the machine that are con-
sidered in the namespace are those that are important to the workflow
within the proposed platform. These are the spindle and the linear axes,
which have sensors attached, the specifications, and the tool magazine.

In the proposed architecture, the measurements from the DAQs are
updated every 0.25 s. Therefore, it depends on the Clients requirements
to select a polling rate. During the development phase of the system, the
OPC-UA client that is used performed polling every 0.25 s to match the
data rate of the DAQs.

Fig. 2. The developed communication protocol between one DAQ and the Gateway together with the Supervisory mechanisms to detect malfunctions in the network.
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3.1.4. Information fusion
The proposed cyber-physical system retrieves data from two dif-

ferent sources; the wireless sensor network and the machine-tool op-
erators. The human operator provides the status of the machine tool,
the currently running task and the fixture and tool availability, through
mobile devices on the shop-floor. Specifically, the operator is able to
report the following machine statuses: (i) down, and (ii) setup.
Furthermore, they report all occurring failures, thus providing the
system with the reason for a defined down mode. According to the
severity of the damage or failure, they can resume or reset the running
task on the machine tool.

Once the data are captured from the aforementioned sources, they
are processed through an information fusion technique, consisting of
the AHP and the DS theory [7]. The information fusion is implemented

in two different levels; the low and the high level. In the low level, the
status of the spindle and the axes are identified based on the sensor
measurements (current measurements). In the high level, the actual
machine-tool status is comprised having taken into account the status
indicated by both the sensors and the human operator inputs. In the low
level the statuses of the axes and the spindle are identified by analysing
the sensor measurements. Following signals from the sensors and spe-
cifically the current measurements, it can be identified if the spindle or
the axes are working. Once the statuses of the axes and the spindle is
identified (if they are working or not), the information is sent to the
high level fusion, where the status of the machine is identified. In this
stage, an input regarding the status of the machine is provided by the
analysed sensor data (if the axes and the spindle are working or not) of
the low level and the input by the human operator. Based on the data

Fig. 3. The developed information model of the implemented OPC-UA communication standard.

Fig. 4. The information fusion technique.
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analysis methods and the defined weights for each source, the final
status of the machine tool is identified.

In each level of the information fusion technique, two different steps
are followed. The first step includes the AHP method. In this step, a
logical framework to determine the benefits of each alternative (data
sources) is considered. Criteria including accuracy, flexibility, error
probability, and real-time response are defined in order to compare the
alternative ranking and calculate the reliability of each source. As a
second step, once the reliability of each source is calculated, the DS
theory of evidence is used to derive a degree of belief about the ma-
chine-tool operating status, combining the evidence from the different
sources. The Dempster-Shafer theory indicates belief in a hypothesis
given a piece of evidence for each machine status. In the DS theory the
weights are assigned to indicate the credibility of each source of in-
formation towards identifying the status of the machine tool. The im-
pact of each distinct piece of evidence is represented by a mass function
(Fig. 4).

Weights are assigned to all mass functions in both levels of fusion
and for each source. The selection of these weights is based on mea-
surements that were performed for each sensor separately considering
different operating environments. In the low-level fusion, the weights
that are applied in axes fusions are 0.3 for available mode and 0.8 for
processing mode. Moreover, for the spindle status fusion the weights
are 0.3 for the available mode, 0.8 for the processing mode of the
spindle current, and 0.9 for the processing mode of the angular velocity
sensor. In the high-level fusion, the weights that are applied for the two
different sources namely the sensory system and the operator input are
0.9 for processing and 0.8 for available and finally 0.7 for processing
and 0.4 for available respectively. By the defined weights the credibility
of each source of information towards identifying the status of the
machine, is calculated. For example, the output of the sensor can
identify the processing mode (machine is busy) with high probability.
However, the sensor input cannot identify the non-processing status
(machine is idle) with high probability as it can only identify that the
motor that the sensor is attached on is not operating, but it does not
have the information regarding the other motors.

In general, by available mode we consider that the inputs that we
receive from the sensors and the human operator reveals that the ma-
chine is idle. However, by processing mode we consider that the inputs
from the sensors and the human operator reveal that the machine status
is busy.

In the present work the weights of the information fusion technique
are defined after a number of tests and experiments with the system.
The weights are defined once the system is installed in the machines
tools and they are adjusted in case that the sources of the low and high
levels will be changed or the inputs of the sources will be changed.
Once the sources will be changed, for example another sensor will be
added or information will be retrieved also by another system, the
weights of the information fusion technique are re-adjusted following a
number of runs based on the new inputs.

The main data provided by the monitoring system includes the
machine-tool status, the machine-tool energy consumption, the ma-
chine-tool utilization, the actual machining time of the machine tool as
well as the task status. The monitoring system monitors the execution of
the running tasks and retrieves data related to their statuses. These
results are generated per machine-tool. Nevertheless, they can be ac-
cumulated in the higher levels of the production line and the factory in
order to provide a holistic view of the manufacturing system. With this
knowledge transferred to the higher levels, accurate decisions can be
made by taking into account the status of the shop-floor and reduce the
bottlenecks that can occur due to non-feasibilities.

3.1.5. Integration aspects
Integration and interoperability are key aspects of Industry 4.0

paradigm. Integration of systems as well as of data is of high im-
portance, as it provides the capability of interfacing different systems

and increase the communication as well as the interoperability [53].
The proposed cyber-physical system, taking into account the main

aspects of integration and interoperability, offers a high level of inter-
connection with other legacy and commercial systems. The cloud da-
tabase is implemented in order to store the facility data considering
machine-tool specifications, cutting tool specifications, as well as the
monitoring data, and to update these data through integration with
other systems.

The developed solution was integrated with the tool database of a
well-known cutting tool manufacturer in order to get the cutting tools
specifications and update the cloud repository accordingly. In addition
to that, it was also integrated with a legacy planning system from a
European company in order to demonstrate and validate the integration
capability of the proposed system.

3.2. Adaptive shop-floor scheduling and condition-based maintenance

Short-term scheduling belongs to the typical decision-making pro-
blems in manufacturing. The increasing product variety generates fur-
ther uncertainties and turbulence in modern shop-floors, making
scheduling a challenging everyday problem. The integration between
scheduling and monitoring systems will provide adaptive decision
making, thus increasing the shop-floor awareness and improving the
common information flow. In this work, the data from the monitoring
system are utilized in order to identify possible machine-tool break-
downs and generate feasible and adaptive schedules. The monitoring
data can be utilized in two different ways. In the first way, the sche-
duling tool and algorithm can utilize the monitoring data from the
monitoring system upon its request, e.g. every 8-hours [54]. The second
way, and the one followed in this work, is that the monitoring system
informs the scheduling tool and algorithm on turbulences in the shop-
floor.

The monitoring system checks the execution of the running tasks
and retrieves data related to their status. More specifically, the status of
each scheduled task can be either completed, on-going, or pending. The
aforementioned data are utilized as input to the scheduling algorithm in
order to produce feasible and accurate schedules.

In this work, adaptive scheduling is considered as the capability to
re-generate alternative and feasible schedules based on the real-time
shop-floor condition. The re-scheduling is performed whenever a
change is required, driven by the feedback from the monitoring system.
Following the captured data from the monitoring system, re-scheduling
can be performed in two different occasions:

• Once the status of the machine tool is detected to be down as well as
when a machine tool returns from down or set up mode.

• Once the monitored processing time of a task is higher than the
scheduled time and the makespan is highly influenced. In this case
and if there is no idle time between this task and the next task in this
machine or between its post condition in another machine, the in-
fluenced tasks are shifted forward based on the additional time. This
additional time is added in the initial makespan and in this way the
monitored makespan is calculated. The makespan is considered
highly influenced and a re-scheduling is required based on Eq. (1)
below:

− ≥MS MS mm sch (1)

Where: MSm is the monitored makespan, MS sch is the scheduled ma-
kespan and m is a parameter that expresses time and can be adjusted
based on the nature of the company and on its main needs and goals.
The parameter m is user defined and is affected by the mean task time,
as well as by the generated makespan.

More specifically, and based on Fig. 5, firstly the status of the ma-
chine tools is examined. If the status of the machine tools is not detected
to be down or the machine tools do not return from down or setup
mode, then the running tasks are monitored. The status of each task is
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Fig. 5. The workflow of the developed adaptive scheduling.

D. Mourtzis, E. Vlachou Journal of Manufacturing Systems 47 (2018) 179–198

187



monitored, and specifically the task duration. As task duration is con-
sidered the time that is required to fulfil a task based on the generated
schedule. If the task duration of a monitored task is higher than the
scheduled task duration provided by the scheduling tool, then the
system examines two different conditions based on the Eqs. (2) and (4)
below:

>t tCondition 1: end stTM NTM (2)

Where: tendTM is the end time of each monitored task and tstNTM is the
start time of the next task in the machine tool.

Based on Eq. (2), the system checks the next task in the machine
tool. If the end time of the monitored task is higher than the start time
of the next task in the machine tool, then, the overall schedule is shifted
foreword by:

= −δt t tend stTM NTM (3)

>t tCondition 2: end stTM PCT (4)

Where: tendTM is the end time of each monitored task and tstPCT is the start
time of the post-condition task.

Based on Eq. (4), the system checks also the post-condition of each
task. If the end time of a task is higher than the start time of the post-
condition task, then the overall schedule is shifted foreword by:

= −δt t tend stTM PCT (5)

Once the aforementioned situations are examined, the makespan of
the schedule is checked based on Eq. (1). If the makespan is highly
influenced, then re-scheduling is required in order to product a new
schedule.

In all the aforementioned occasions, when re-scheduling is required,
the monitoring system calculates the pending tasks as well as the
availability of each machine tool. As available, are considered not only
the idle machine tools but also the busy machine tools based on re-
maining time needed for finishing a running task. Finally, the re-
maining operating time between failure for each machine tool is cal-
culated and is considered in the machine tools availability calculation.

As a result, once re-scheduling is required the monitoring system
provides to the scheduling algorithm the machine tools together with
their availability as well as the pending and ongoing tasks.

The scheduling algorithm, which consists of a multi-criteria deci-
sion-making algorithm, is utilized to generate feasible scheduling al-
ternatives. Each alternative is considered as a set of resources (machine
tools or human operators) to tasks assignments that can carry out the
workload. The number of generated alternatives is guided by three
adjustable control parameters, namely the maximum number of alter-
natives (MNA), the decision-horizon (DH) and the sampling rate (SR).
MNA controls the breadth of the search, DH controls the depth, and SR
directs the search towards branches of high-quality solutions. Through
the three adjustable parameters, the algorithm can identify a good so-
lution by reducing the solution space, and consequently reduce the
computational time. The selection of the preferable values of the three
parameters is performed through a statistical design of experiments
[55] in order to reach the results of the highest possible quality [56].

The workflow of the proposed adaptive scheduling is presented
below (Fig. 5).

As show in Fig. 5, the procedure has a first step the determination of
the alternatives. The second step is to determine the attributes, which
are the criteria used to evaluate the alternatives. Once the criteria are
defined, the consequences need to be defined. The consequences are the
values of the attributes at the time the decisions are perfomed in order
to evaluate the alternatives. The main criteria that are considered by
the proposed algorithm are the flowtime (6), the tardiness (7), the cost
(8) as well as the quality (9):
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where
Riith resource (i= 1,…,ℓ)
altq qth alternative formed at the decision point
Nnumber of completed tasks in the work center/jobshop at a deci-

sion point
Ticomp(altq) completion time of the ith pending task if altq is im-

plemented
Tiarr time at which the ith pending task arrived at the work center
Tiest (altq) estimated time required to process ith pending task if altq

is implemented
Ri

cost cost of resource i to process the pending task if altq is im-
plemented

Qiquality index of the resource Ri to perform a ith pending task if altq
is implemented

Tidd due date of the ith pending task
The weights of the criteria are user-defined based on manufacturing

experts, and represent the main goals and needs of each industry.
The proposed scheduling algorithm is selected compared to other

approaches, as it has the ability to adapt to new orders and perform
quick rescheduling with high-quality solutions [56]. Once the mon-
itoring system detects a turbulence in the shop-floor, all the available
monitoring data including machine tools status and availability, as well
as the status of the tasks are sent to the smart search algorithm in order
to generate new feasible schedules. More specifically, the on-going
tasks remain in their position and the pending tasks are re-allocated to
the available machine tools. The availability of the machine tools is
highly influenced by their maintenance plan [57]. In this work, the
machine tools status is derived also by taking into consideration the
outputs of a condition-based maintenance approach. In this approach
which will be described in more details in the following section, the
remaining operating time between failures (ROTBF) [45] is calculated
based on the actual machine time and the define mean time between
failures (MTBF) of the machine tool.

The scheduling algorithm is also developed in a software that hosts
a graphical user interface and a database where all the data required for
the scheduling or are produced by the scheduling are stored and can be
exchanged with the monitoring tool. More specifically, the defined
orders, the jobs, the task- resources suitability, the task sequence (post-
conditions), as well as the set up times for different combination of task-
resource are defined in the graphical user interface of the scheduling
tool. As a result, when rescheduling should be performed, the sche-
duling algorithm gets all the necessary information from the monitoring
tool as well as from its database based on the user data entry.

3.2.1. Condition-based maintenance
Maintenance and its cost continue, over the years, to draw the at-

tention of production management, since the unplanned failures in-
crease the reliability of the system and decrease the return of invest-
ments. Maintenance is a core activity of the production lifecycle since it
accounts for as much as 60–70% of its total costs [57]. Towards that
end, this work proposes a condition-based maintenance approach based
on monitoring data. Condition-Based Maintenance (CBM) is defined as
the maintenance strategy where the decisions are made based on the
machine condition indicators obtained in most cases through mea-
surement systems [8]. This definition is the one that is followed also in
this work. The cloud-based monitoring system described in the previous
sections is employed in order to monitor and calculate the status of the
machine tools as well as its actual machining time. In addition to that,
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the proposed monitoring system includes a database, where shop-floor
data regarding machine-tool and cutting-tool specifications are stored.

Once the status and the machining time of the machine tool are
calculated, the MTBF is retrieved from the database of the monitoring
system in order to calculate the ROBTF. The ROTBF is calculated based
on the actual machining time of the machine tool (AMT) and the de-
fined MTBF of the machine tool, following Eq. (10) below:

ROTBF=MTBF – AMT (10)

Where:
ROTBF Remaining Operating Time Between Failure of each ma-

chine tool
MTBF Mean Time Between Failure of each machine tool
AMT Actual Machining Time of the machine tool
Once the machine tool status as well as the ROTBF are calculated, the

monitoring system investigates two different scenarios. The first is whe-
ther the machine tool status is down. If the status of the machine tool is
down, the operator as well as the maintenance department are informed.
The operator reports through the mobile device possible failures that
occur in order to inform the maintenance department and perform ac-
curate and quick maintenance. The second scenario under investigation is
whether the deviation between the MTBF and the ROTBF is lower than a
parameter/threshold “k” In this case, if the AMT has reached a high
percentage of the MTBF, the machine tool operator as well as the main-
tenance department are informed to perform condition-based main-
tenance. The parameter “k” expresses time (hours) and can be changed
based on the different types of machine tools or the different types of
production. The aforementioned parameter is user-defined based on the
experience of the maintenance experts and on the needs of the company.
The second scenario can be presented below also as pseudo code:

The monitoring tool is developed in a cloud-based platform in order
to enable ubiquitous data [3] information sharing of the services among
users and IT tools alike.

As a result, the proposed maintenance approach is capable of
identifying the potential failures of the machine tools. Informed of the
remaining operating time between failure of the machine tools and the
frequency of the failures, the maintenance department is aware of the
shop-floor condition. In addition to the above, the proposed system is
capable of identifying possible failures also through the analysis of the
current measurements of the main motors of the machine tool. This part
is not presented in this work, however the proposed system through the
real-time captured data can identify deviations from the current mea-
surement which can be correlated with the status of the motor and
identify possible failures before they will occur [58]. Moreover,
through the proposed system, although the MTBF is a technical char-
acteristic, it can be adjusted based on the analysis of the monitoring
data, supporting the maintenance department to perform more accurate

maintenance and also providing meaningful information to the sche-
duling system regarding the availability of the machine tools based on
the real shop-floor condition. Subsequently, the maintenance depart-
ment is capable of performing quick and efficient maintenance of the
machine tools. In addition to that, the proposed cloud-based cyber-
physical system is informed on the status of the machine tools and can
perform adaptive scheduling as well as condition-based maintenance
increasing the system’s reliability and the company’s productivity.
Among the main benefits of condition-based maintenance is the in-
creased uptime and as a result the reduced down time of the machine
tools. Moreover, Through the proposed condition-based maintenance,
the maintenance failure and as a result also the maintenance cost can be
reduced improving the overall equipment performance. Last but not
least the increased efficiency of the maintenance management and the
real-time feedback also to the production scheduling will increase
production systems’ efficiency and performance.

With the proposed approach adaptive control can be performed and
companies can raise their competitiveness by delivering new and ex-
isting products quickly, efficiently as well as in low cost and high
quality.

4. Software implementation

Cloud technology and specifically cloud-based services support
collaboration and enable ubiquitous data access by multiple users and
IT tools. Cloud-based services address the challenges of collaboration,
re-configurability, as well as adaptability of manufacturing system in
dynamic changes. Thus, a cloud- based cyber-physical platform is de-
veloped in order to enable ubiquitous information sharing. The devel-
oped platform is provided as a software-as-a-service (SaaS) and sup-

ports several communication and security mechanisms and protocols.
The cloud platform includes an infrastructure as a service (IaaS), virtual
Linux machine, an Apache Hyper Text Transfer Protocol Secure
(HTTPS) server, as well as a Ruby on Rails framework (RoR) (Fig. 6).

To enhance the proposed architecture in terms of compatibility with
various sources, both OPC-UA and RESTful interfaces are implemented
to provide integration capabilities with industrial software and increase
system’s interoperability.

The database selected for the developed platform is a MongoDB (No
SQL) database, in order to support sensorial data storage and proces-
sing. Due to the ever-increasing requirements, flexibility in the database
schemas is required. Therefore, for these purposes, non-relational
(NoSQL) databases are more convenient compared to the relational
(SQL) databases that are not flexible when changes in the schema are
required. In the developed database, the data is stored as documents
instead of tables with columns and rows, and as a result it is capable of
quickly retrieving data over a large number of nodes, in our case sensor
nodes [59]. The NoSQL database as distributed database is built for
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increased performance and scalability. As a result, in case of large
amount of documents due to sensor data, the MongoDB can support
storage on more than one server by dividing server into mongos –a set
of routing server, and achieving parallel access and efficient operation.
The relationship diagram of the database can be shown in Fig. 7.

Security was applied in three layers, namely the shop-floor layer,
the web application layer, and the cloud service-operating layer. In
these layers, there is a variety of countermeasures against different
threats, such as encryption during data transfer in the shop-floor level
using AES 128-bit encryption algorithm, identification of clients
through Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols, used along with a secure database authentication system and
the Virtual Private Network (VPN) technology.

5. Case study – mould-making SME

The presence of Small and Medium Enterprises (SMEs) is very strong
in the industrial sector. Industry 4.0 and IoT paradigms aim to enable
SMEs to shift from their traditional way of manufacturing to a new
digitalized one. In order to address today’s challenges of adaptability to
changes and high-quality products, SMEs should begin to adopt new
technologies and reap their benefits. One main concern regarding the
adoption of new technologies and IT tools, is that most of the provided
solutions cannot be financially affordable by SMEs [60]. Moreover,
SMEs can benefit from new reconfigurable and easy-to-install solutions.

Towards that, the proposed cloud-based cyber-physical system has
been validated in a high-precision mould-making industry. The mould-

making industry is highly specialized and knowledge-dependent. Once
a new production order is released, a scheduling of its tasks must
follow. Work is delegated among engineers based on their expertise,
who are usually in charge of a project from start to end. Unofficial
verbal meetings take place in order to schedule resources, and, if the
situation demands it, the management department is involved in the
decision making and work prioritization, most of the times without
considering the actual shop-floor condition. The company considers
two different dispatch rules during the decision-making and the work
prioritization, the First in First out (FIFO) and the Earlier Due Date
(EDD). No scheduling or monitoring software tools are used to support
shop-floor control. In addition to that, maintenance scheduling is per-
formed based on unforeseen machine-tool breakdowns (corrective
maintenance) or following the defined MTBF of the machine tools
(preventive maintenance). Therefore, through the proposed cloud-
based cyber-physical system, not only will the shop-floor and the
maintenance schedule be more accurate, flexible and adaptive to
handle uncertainties and unpredictable events; but also the commu-
nication among the different employees and managers in the company
will be improved through reduced iterations. In addition to that, via the
mobile devices, anyone from the machine-tool operator to the company
manager, will be informed on the status of the company and its per-
formance.

The shop-floor of the mold-making industry, consists of 8 job-shops,
which are defined as groups of work-centers (including design, milling,
EDM, measuring, etc.) and 14 work-centers, which are defined as group
of machines, (for example job-shop milling which includes the work-

Fig. 6. The Cloud software platform.
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centers roughing, finishing, drilling, among others) and include 40 in-
dividual resources in total (Fig. 8).

Among the 40 resources are the CNC machine tools that are capable
of performing milling, drilling, turning, grinding, as well as hardening,

and human operators that perform manual operations such as design,
assembly, measuring etc. The mold-making industry produces a high
number of molds every year that are utilized, among others, by con-
sumer-goods companies and plastic manufacturers.

Fig. 7. Database schema of the software of the monitoring system.

Fig. 8. The four-level hierarchical workload and facility model.
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The proposed cyber-physical system was installed in the company,
both the hardware monitoring system as well as the software for
adaptive scheduling and condition-based maintenance. The hardware
of the monitoring system was installed in the machine tools, and mobile
devices were provided to the machine tool operators (Fig. 9). This was
performed in order to identify and measure the time required to
monitor and track the changes in the production with and without the
proposed solution. The total set up was carried out in less than 10min
per machine tool. Once the DAQs were installed, the wireless sensor
network was set up and the internet bandwidth of the shop-floor was
tested. The captured data were transmitted into the developed cloud
server of the proposed system. The monitoring data were analyzed
through the information fusion technique and finally, the status of the
machine tools, their energy consumption, availability, utilization, as
well as their actual machining time were calculated and provided. In
addition to that, the overall progress of the generated schedule was
calculated, reporting the completed, on-going, and pending tasks. Al
the above information was provided through the developed software to
the machine tool operator as well as to the production manager. In this
way, the machine tools operators were capable of providing easily and
in near real-time the necessary data and also the production and
company managers were capable of visualizing the shop-floor condition
in real-time through the calculated performance indicators (energy
consumption, machine status, utilization, actual machining time).

As far as the shop-floor scheduling, the developed adaptive decision-
making algorithm was used and a comparison was performed with
three different dispatch rules taking into consideration the two that are
already used by the mould-making company during the manual sche-
duling. The three dispatching rules that were used are FIFO, EDD, as
well as SPT (Shortest Processing Time). The comparison was performed
taking into account 5 different moulds as orders. The required tasks for
producing the 5 moulds together with their main information (task
time, post-conditions, due date), were added in the developed software
and several runs were performed aiming to compare the generated
schedules with the ones generated by the aforementioned dispatch
rules. The performance of the proposed approach compared to other
existing was examined based on the mean values of the performance
indicators of utilisation, flowtime, and tardiness, which are given by the
following formulas (11)–(13).
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where:
Ncomp the number of completed jobs up to time tn
ticomp the completion time of job i
tidd the due date of job i
tiarr the arrival time of job i
tistart the start time of job i
ttot the total operating time of the facility
tn the time point at which all performance measures are calculated
The utilisation of the facility (multiple machines) is calculated as

the percentage of the time required for executing each job compared to
the total operating time of the facility. Following the fact that multiple
jobs can be executed in parallel, the calculated percentages for each job
are summed and then divided by the total number of jobs, that are
executed in the facility, to calculate the mean utilization of the facility.
Each job is consisted by several tasks that are executed in several ma-
chines.

For the proposed adaptive scheduling algorithm, the three ad-
justable factors were defined using statistical design of experiments, in
order to generate the shop-floor schedule: the MNA, the DH, and the SR.
The statistical design of experiments reduced the required number of
experiments for determining the impact of tunable parameters on the
cardinal preference of the decision-making process. The number of
experiments was 25, and each factor had five levels. The analysis of
means (ANOM) diagrams were created, which depict the impact of the
values of the factors on the utility value. According to ANOM diagrams,
the preferable values to be used in the particular scheduling experiment
are MNA=100, DH=15, and SR=20. Based on these values, the
adaptive scheduling algorithm was used and its generated schedules
were compared with the ones from the dispatch rules.

Fig. 9. The monitoring system installed in different machines and the mobile device provided to human operator.
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6. Results and discussion

The proposed system monitored the machine tools and calculated
their status as well as their energy consumption, as shown in Fig. 10
below. Based on Fig. 10, the status of the machine tools can be iden-
tified, considering set up mode, busy mode, idle mode, as well as down
mode. In addition to that, User-friendly traffic lights (red, yellow,
green, blue) that represent the status of each machine are employed
(Fig. 10).

Moreover, detailed monitoring data for each machine are provided
to the end-user (Fig. 10), who has the capability to visualize perfor-
mance indicators including machine’s energy consumption, be in-
formed on machine’s utilization, and inspect the monitored data in real-
time (data strips obtained from sensors).

In addition to the above, in a case that any machine tool of the shop-
floor was down as well as once the monitoring processing time of a task
has exceeded the scheduled one, and the makespan was highly influ-
enced, the proposed platform started the re-scheduling procedure using
as main input the captured data from the monitoring system and the
maintenance approach. The data included the machine tools together
with their availability, as well as the pending and ongoing tasks, in
order to generate the feasible alternative schedules and select the op-
timum one, the most appropriate to be executed (Fig. 11). Different
scenarios were examined including machine tools to go down, exceed of
original tasks duration as well as makespan influence as shown in
Fig. 11. As shown also in Fig. 11, the status of the machine tool as well
as the ROTBF of each machine tool is calculated. In addition to that, a
real-time tracking on the produced schedule is performed, examining
the different conditions for which re-scheduling should be performed.
In this way, the proposed solution provided adaptability and awareness
to the company, leading to increased productivity, machine tools uti-
lization and reduced breakdowns.

The evaluation of the proposed approach has been performed in two
different directions. Firstly, the proposed adaptive scheduling algorithm
(ASA) was compared with existing dispatch rules (FIFO, SPT, EDD) in
order to examine its performance compared to other approaches that
were followed in the manual scheduling by the mould-making industry
(Fig. 12).

More specifically, a data set was used, which was provided by the
company after workshops and discussions with the production man-
ager. The data set was consisted of 40 resources and five orders
(moulds) that can run simultaneously in the production. The five orders
consisted of 255 tasks in total. Based on this data set, four different
scenarios were executed with three different dispatch rules (FIFO, SPT,

EDD) and with the multi-criteria scheduling algorithm. Three perfor-
mance indicators were measured to compare their performance in-
cluding mean flowtime, mean utilization, and mean tardiness. The re-
sults of these scenarios are depicted in Fig. 12.

The diagrams of Fig. 12 reveal the superiority of the ASA in terms of
the calculated performance indicator values. Still, in cases when a
specific production target must be achieved, dispatch rules yielded high
quality results. For instance, EDD identified schedules with lowest
flowtime compared to the other dispatch rules and ASA.

Secondly, the proposed cloud-based cyber-physical systems for
adaptive scheduling was examined in comparison to the traditional
manner of scheduling and monitoring the machining tasks as discussed
with the engineers of the company. This way of scheduling includes a
lot of manual input and oral meetings within the company. Specifically,
the weekly schedule is generated manually by the production engineers
during a meeting that last for an average of 90min every Monday
morning. In addition to that, to compensate the unpredicted events that
occur during production, manual rescheduling actions are performed
which require approximately a total time of 60min per week. In each
unpredicted event, the production engineers perform short oral meet-
ings, discussing on the condition of the production and deciding on how
the production schedule will be changed. The total time required for
manual rescheduling actions (weekly) includes the oral meeting as well
as the time required to change the schedule and provide it again to the
production through papers. The equivalent procedure after the adop-
tion of the proposed monitoring/scheduling system requires an average
time of 15min in the beginning of the week to generate the initial
schedule and approximately 30min per week to make rescheduling
actions using the aforementioned algorithm (Table 1). In both manual
and automated procedures, the time needed to perform the data entry
(orders, jobs, tasks, etc.) is identical and is not considered during the
calculation of the required time durations. This procedure involves
many actors such as the order department, the product designers, the
CAM engineers, and the shop-floor engineer. Therefore, the total time
that is required for scheduling and rescheduling during the time period
of one week is reduced by 70% (Fig. 13). The aforementioned values of
the time required after the adoption of the proposed system were
measured during several experiments that were performed once the
monitoring system were installed in the machine tools and the mobile
devices were provided to the human operators. In addition to that, the
values of the time required for the traditional scheduling were mea-
sured together with the production engineers considering several un-
predicted events during the production.

The formula for calculating the time required for generating

Fig. 10. Screenshot from the developed monitoring system presenting machine tool real-time monitoring.
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schedules within a week is presented below (14):

= +TS TSin l TSre min Week* ( / ) (14)

Where:
TS is the total time required for generating schedules within a week
TSin is the total time required for generating the initial schedule in

the beginning of the week
TSre is the total time required for performing rescheduling
l is the number of times that rescheduling is needed
The above results demonstrate that the adaptive scheduling algo-

rithm together with its software provide to the company the capability

of easily scheduling their production as the proposed algorithm can
provide a good solution in a couple of minutes compared to the tradi-
tional way. Moreover, it enables company to perform re-scheduling in
half of the initial time taking also into consideration the real shop-floor
data. Compared to the traditional way where the identification of the
down status of the machine tool and the deviation in the expected due
date were time-consuming, the proposed system reduces this time as
well as the time needed to re-generate again a schedule. Moving to-
wards digitalisation, the proposed adaptive scheduling algorithm not
only provides a digitalized way of scheduling enriched with a multi-
criteria decision-making algorithm but also is capable of being

Fig. 11. Screenshot from the developed monitoring system showing the results, (i) the identification of the machine tools status, (ii) the monitoring of the proposed
schedule, and (iii) the ROTBF based on the condition-based maintenance approach.
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integrated with different production systems (maintenance, mon-
itoring), retrieving their data in real-time analysing them, and gen-
erating accurate and effective schedules.

The same comparison between the manual operation and the au-
tomated one was performed also for the monitoring component. The
time to monitor one task is estimated based on tests with a stop watch
to be 45 s (0.75 min) and based on discussions with the operators and
the experience of the engineers, another 20min per machine, on a
weekly basis, are spent in order for the operators to make sure that the
proper information for each task is documented correctly. The average
number of machining tasks per week is 25 and the number of working
machines is 20. Therefore, a total 418.75min per week is required for
manual monitoring purposes. The engineer responsible to report these
time sheets in the online Excel file also spends 45 s per task (0.75 min),
and an additional 1.5 h/week, to correct errors, retrieve missing in-
formation when necessary and mostly check the data for consistency.
This results into 108.75min per week for reporting. The system is error
prone, the operators might use different code names among them,
forget to put in the completion times, and unreadable handwriting are
reasons for delays and mistakes. The total required time for tracking is
527.5 min per week.

Considering the proposed system, the tracking of the task will be
performed through the monitoring system supported by the input from
the human operator through the provided mobile device This process
has been timed to be 15 s (0.25 min) per task, which is 6.25min per
week. This is a 66% reduction in time per task and also eliminates the
20-minute flat time per week that was calculated for retrieving missing

information. In order to check the reported tasks for potential errors, a
total time of 50min per week is estimated. Therefore, the whole
tracking procedure requires 56.25min on a weekly basis (Table 2). It is
evident that the automation of this procedure eliminates dramatically
the amount of manual work (Fig. 13).

The formula for calculating the time required in task tracking per
week is presented below (15):

= +TT TR TM min Week( / ) (15)

where:
TT is the total time required for tracking the tasks within a week
TR is the total time required for reporting the monitored tasks

within a week
TM is the total time required for monitoring the duration of the

tasks within a week
Fig. 13 presents the results of the proposed approach compared to

the traditional one. Technically, the industrial company has moved
towards digitalization by incorporating IoT-based monitoring system
for machine tools, mobile devices for human operators and industrial
communication protocols to enable data integration from different
sources. Through the implementation of the wireless sensor network
and the communication protocols, the data can be captured, pre-pro-
cessed and transmitted in real-time. The implemented information fu-
sion technique is capable is calculating important performance in-
dicators that can be utilized not only by the scheduling algorithm but
also by the condition-based approach, providing accurate information
to the adaptive scheduling algorithm. Last but not least, the software
implementation and the cloud platform enable the effective data sto-
rage and the efficient data processing, enabling also ubiquitous data
access. As a result, the proposed cyber-physical system supports the
effective production scheduling by reducing the required time, the ef-
ficient production monitoring by increasing the awareness on the shop-
floor condition, the effective and accurate maintenance management
through the condition-based maintenance approach, as well as the
moving towards digitalisation and Industry 4.0 paradigms empowering
the company and making it more competitive.

The digitalization of the mould-making industry was performed in

Fig. 12. Performance indicators (Mean Flowtime, Mean Utilization, Mean Tardiness) vs Scheduling Strategy.

Table 1
Time required for scheduling within a week based on the adaptive scheduling
and the traditional approach.

Time Required for scheduling/
week

Adaptive Scheduling Traditional approach

Initial schedule 15 min 90 min
Rescheduling 30 min 60 min
Total 45 min 150min
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the different levels of the enterprise. Firstly, the machine tools were
connected to the wireless sensor network, and were transformed into
cyber-machine tools. Moreover, the monitoring system retrieved and
analysed the shop-floor data, providing meaningful information to the
scheduling algorithm as well as to the condition-based maintenance
approach. The decision-making tools and practises, which were pre-
viously used in isolation without considering any feedback, are now
connected under the umbrella of the cloud platform. The different le-
vels of communication were improved through the digitalization and
the use of mobile devices, reducing the iteration between the different

roles in the company and raising their awareness.
A reliable, reconfigurable and cost-efficient system was applied

addressing some of the main challenges of the IoT and Industry 4. 0
paradigms in manufacturing and specifically in SMEs: A cloud-based
cyber-physical system capable of performing adaptive scheduling and
control of modern shop-floors. The proposed system increases the sys-
tem’s productivity and reliability, by increasing the awareness on the
actual condition of the shop-floor and quickly react and control the
turbulences in modern shop-floors.

Finally, the main points/benefits of the proposed system compared
with commercial real-time shop-floor production planning software, is
that the proposed system in inexpensive, reliable, and affordable for
SMEs. It also supports different communication protocols and standards
like OPC-UA enabling the efficient integration of MES, ERP, and other
systems. Moreover, the proposed system can also consider data not only
from the shop-floor but also from the maintenance planning, enabling
the integration of information and the generation of accurate schedules.
Last but not least, the proposed approach is enhanced with a scheduling
system that includes a multi-criteria decision making algorithm capable
of retrieving real-time data and re-generating accurate and effective
schedules and which can be customized by incorporating different

Fig. 13. The results comparing the traditional approach with the proposed cloud-based cyber-physical system for adaptive scheduling.

Table 2
Time required for task monitoring within a week based on the adaptive sche-
duling and the traditional approach.

Time Required for task
monitoring/week

Proposed cyber-
physical system

Traditional approach

Manual monitoring of tasks 6.25 min 418.75 min
Manual Reporting of tasks 50 min 108.75 min
Total 56.25 min 527.5 min
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criteria based on the main goals and needs of industrial companies.

7. Conclusions

This paper proposes a cloud-based cyber-physical system for adap-
tive shop-floor scheduling and condition-based maintenance. Current
approaches related to shop-floor scheduling and control are working in
isolation without considering the actual status of the production. This
paper proposes a cloud-based system capable of performing adaptive
shop-floor scheduling and condition-based maintenance. The main
contribution of the proposed system can be summarised below:

• A cost-effective monitoring system which is capable of retrieving
data from various sources and transmitting these data through a
developed wireless sensor network and communication protocols

• A multi-criteria decision-making algorithm for adaptive scheduling
capable of taking us input in real-time data from different sources
from shop-floor (not only sensor data but also data from human
operators, data from maintenance systems, etc.), and performing
accurate and effective production scheduling

• A real cyber-physical system which consists of different modules
which can communicate all together enabling interoperability
(monitoring, adaptive scheduling, condition-based maintenance),
and which are developed in a cloud environment supported by
different technologies aiming to move towards Industry 4.0, digi-
talization and IoT.

• An overall system which can be easily applied in different kind of
companies and which has been applied in a mould making industry
in this case, presenting highly satisfied results compared to tradi-
tional ways.

Among the main advantages of the proposed platform and its ap-
plication are:

• Increased awareness on both machine and shop-floor level condi-
tion.

• Effective and accurate maintenance of machine tools.

• Accurate decisions though condition-based maintenance and adap-
tive scheduling.

• Increased interoperability and communication among the different
systems in the company.

• Increased automation which will support companies to shift towards
Industry 4.0 environment.

To conclude, the present work contributes to the digitalization of
manufacturing companies, providing a reliable, reconfigurable as well
as cost-efficient approach that will support companies in changing their
way of manufacturing, increasing their productivity, raising their
awareness and reducing unforeseen failures. The feasibility of the
proposed approach has been validated in a mould-making SME that is
part of a larger supply chain, in which its position will be strengthened.
In the case study, the SME was benefit from reduced schedule and
monitoring time and from adaptive scheduling efforts.

In future work, the captured data from the monitoring system will
be further analysed and used for energy consumption prediction as well
as for predictive maintenance planning considering the available time
windows of the machine tools.
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