MIS (Management Information System)

Department of Industrial Engineering
Sharif University of Technology

Session # 2

Session schedule

- Contents
 - Structured analysis and design
 - Information system development
 - Systems Analysis and Design
Structured analysis and design

- **Structured analysis**
 - Study the current business environment
 - Model the old logical system
 - Model the new logical system
 - Model the new physical environment
 - Evaluate alternatives
 - Select the best design
 - Create the structured specification

Structured design

- **Structured design**
 - Construct a structure chart
 - Examine the coupling (interdependency) relationships
 - Examine module cohesion
 - Refine the structure chart
 - Perform transform analysis
 - Perform transaction analysis
 - Create module specifications
 - Package the physical modules
Information system development

- **Information system development project**
 - Complex ??

<table>
<thead>
<tr>
<th>Activity</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Sept</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Assurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information system development

- **Information system development project**
 - Realistic behavior

<table>
<thead>
<tr>
<th>Activity</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Sept</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Assurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information system development

- Information system development project
 - Managerial perspective

 Management dictates how much time we have and shows no flexibility about running behind schedule

- Information system development project
 - The problem of managerial perspective fits into one of three scenarios:
 - Management is ignorant of the analysis and construction of systems and simply has no idea how much time is required to complete the project.
 - Management has little confidence in Development.
 - Unfortunately, bad management does exist.
Information system development

- Information system development project

System Development Life Cycle (SDLC)

- Tiers of Software Development
- User Interface
- Tools
- Productivity Through Automation
- Object Orientation
- Client/Server
- Internet/Intranet
Information system development

• Tiers of Software Development
 • User Interface
 • Systems cannot be effectively designed without an appropriate user interface.

 • The user-interface tier is often overlooked: Many software projects today move too quickly into development without the effort having been spent to determine what is really needed from the user community.

• Tools
 • Software systems require that analysts have the appropriate tools to do their job.

 • Even more significant challenge is understanding which of the many available tools to use at any given point.

 • Software development tools are often designed for specialized use rather than for general application, and using the wrong tool can potentially cause significant damage.

 • The sequence of use for each specialized tool is also critical to success.
Information system development

- Tiers of Software Development
 - Productivity Through Automation
 - Having the appropriate tools and knowing how and when to use them is only part of the formula for success. Analysts must also be productive.
 - Productivity can be accomplished only through the use of automation.
 - Automation is implemented using integrated computer aided software engineering (CASE) products.

Information system development

- Tiers of Software Development
 - Object Orientation
 - Successful projects employ the concepts of object orientation (OO).
 - OO is the foundation of the reusable components that can be incorporated into other applications later.
Information system development

- **Tiers of Software Development**
 - **Client/Server**
 - Client/server software processing, in its true implementation, involves the interaction of objects and defining the way in which they will communicate with each other.

- **Internet/Intranet**
 - The advent of Web-based technology, sometimes known as Internet/Intranet processing, has led the industry to the use of a new breed of software applications.
 - e-commerce will exert the strongest shaping influence on the analyst’s profession—a profession destined to become tomorrow’s integrators of systems development.

Information system development

- **Information system development project**

<table>
<thead>
<tr>
<th>Tier</th>
<th>Analyst Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Internet/Intranet—Web-based transaction processing, media, and graphics</td>
</tr>
<tr>
<td>5</td>
<td>Client/server—breaking down objects to their client and server applications</td>
</tr>
<tr>
<td>4</td>
<td>Object orientation—selection of objects and classes</td>
</tr>
<tr>
<td>3</td>
<td>CASE—automation and productivity of tier 2</td>
</tr>
<tr>
<td>2</td>
<td>Structured Tools—DFD, PFD, ERD, STD, process specification, data repository</td>
</tr>
<tr>
<td>1</td>
<td>User Interface—interviewing skills, JAD, RAD</td>
</tr>
</tbody>
</table>
Information system development

- System Development Life Cycle (SDLC)
 - The basis for most systems analysis and design methodologies is the system development life cycle or SDLC.
 - It is sometimes called the waterfall method because the model visually suggests work cascading from step to step like a series of waterfalls.
 - In reality, there is considerable feedback between the various steps or phases.

SDLC

- Problem Definition
 - Analysis
 - Design
 - Development
 - Testing
 - Implementation
 - Maintenance
System Development Life Cycle (SDLC)

- **Problem definition**
 - The intent is to identify the problem, determine its cause, and outline a strategy for solving it.
- **Analysis**
 - The objective of analysis is to determine exactly what must be done to solve the problem (logical elements).
- **Design**
 - The objective of design is to determine how the problem will be solved (shift from logical to the physical).
- **Development (creation)**
 - The system is created during development.
- **Test**
 - Once the system is developed, it is tested to ensure that it does what it was designed to do.
- **Implementation**
 - After the system passes its final test, it is implemented and released to the user.
- **Maintenance**
 - The objective of maintenance is to keep the system functioning at an acceptable level.

Information system development

- **Information system development project**

<table>
<thead>
<tr>
<th>Tier</th>
<th>Analyst Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Internet/Intranet—Web-based transaction processing, media, and graphics</td>
</tr>
<tr>
<td>5</td>
<td>Client/server—breaking down objects to their client and server applications</td>
</tr>
<tr>
<td>4</td>
<td>Object orientation—selection of objects and classes</td>
</tr>
<tr>
<td>3</td>
<td>CASE—automation and productivity of tier 2</td>
</tr>
<tr>
<td>2</td>
<td>Structured Tools—DFD, PFD, ERD, STD, process specification, data repository</td>
</tr>
<tr>
<td>1</td>
<td>User Interface—interviewing skills, JAD, RAD</td>
</tr>
</tbody>
</table>

Department of Industrial Engineering, Sharif University of Technology
MIS (Management Information System), Session #2