

Product Planning & Development (21-423)

Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology

Session #12

Course Description

Instructor

- Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
- Email: <u>FValilai@sharif.edu</u>, Tel: 6616-5706
- Website: Sharif.edu/~fvalilai

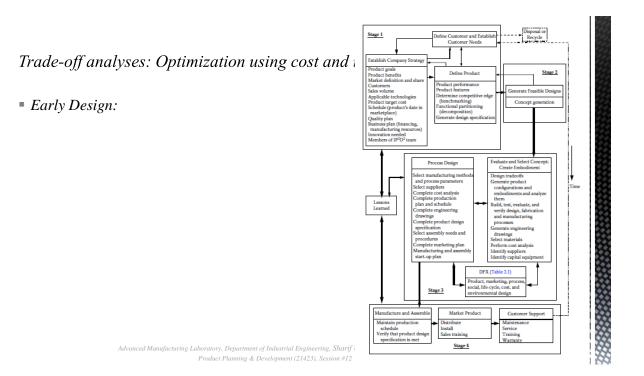
Recommended prerequisite

- Manufacturing process I (21-418)
- Class time
 Sunday-Tuesday 18:00-19:30
 Course evaluation
 Mid-term (25%)
 Final exam (40%)
 Quiz (5%)
 Exercise (Manufacturing Lab.) (30%)

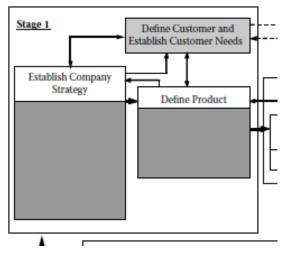
Session reference

Reference:

- Edward B., "Integrated product and process design and development : the product realization process", CRC Press, 2010
- John Priest, Jose Sanchez; "Product Development and Design for Manufacturing: A Collaborative Approach to Producibility and Reliability, Second Edition", CRC Press, 2001
- Mital et al., "Product Development A Structured Approach to Consume Product Development, Design, and Manufacture", Butterworth-Heinemann, 2008


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

Course Description (Continued..)


- Contents:
- Product development in the changing Global world
- Stages of Product Development
- The Structure of the Product Design Process
- *Early design: Requirement definition and conceptual Design*
- Trade-off analyses: Optimization using cost and utility Metrics
- Detailed design: Analysis and Modeling
- Design Review: Designing to Ensure Quality
- Production System; Strategies, planning, and methodologies
- Production System Development
- Planning and Preparation for Efficient Development
- Supply chain: Logistics, packaging, supply chain, and the environment

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

2

Functional modeling

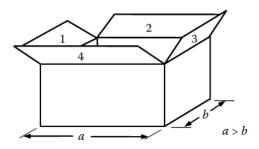
- *Functional Decomposition and the Axiomatic Approach*
 - AD gives a means of clarifying and focusing both the product's functions and the objectives that the design should meet.
 - The axiomatic approach provides a compact visual way of expressing the design intent and the overall design objective.
 - (FRs) Functional Requirements are defined as the minimum no unique set of independent mandatory requirements that completely characterize the design objectives for a specific need.
 - *If possible, they must be independent of each other at every level in the design hierarchy.*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

Product Functional Requirements and Functional Decomposition

Functional Decomposition and the Axiomatic Approach: Two Axioms

$$\{FR\} = \begin{cases} (FR)_{1} \\ \vdots \\ (FR)_{n} \end{cases} \text{ and } \{DP\} = \begin{cases} (DP)_{1} \\ \vdots \\ (DP)_{n} \end{cases}$$
$$\{FR\} = [A]\{DP\}$$
$$[A] = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \dots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix}$$


- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - There are three types of solutions to the problem.
 - The first type of solution is the one that satisfies Axiom 1 and is attained when [A] is a diagonal matrix. This is called the uncoupled solution
 - The second type of solution always violates Axiom 1. In this case and the solution is called coupled
 - The third solution is called a decoupled solution, and the independence of the FRs can be assured if we arrange the DPs in a certain order to arrive at the design matrix.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

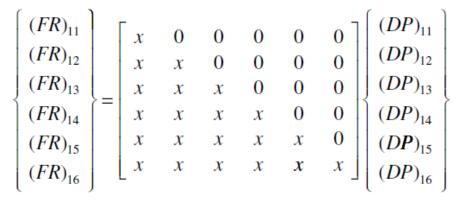
Product Functional Requirements and Functional Decomposition

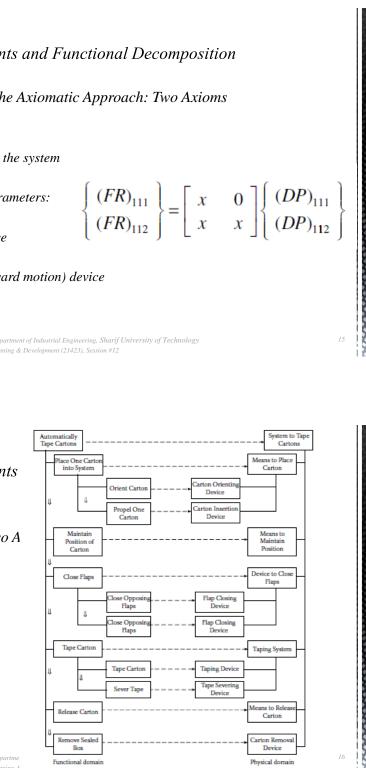
- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Phrasing of the Functional Requirements
 - "Tow a disabled automobile from one location to another,"
 - "Transport a disabled automobile from one location to another,"
 - *"Move a disabled automobile from one location to another."*

Functional Decomposition and the Axiomatic Approach: Two Axioms

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - (FR)11 = Place one carton into the system
 - (FR)12 = Maintain position of carton
 - (FR)13 = Close the carton's flaps
 - $(FR)14 = Tape \ carton$
 - (FR)15 = Release carton
 - (FR)16 = Remove sealed box from system


Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12


- Functional Decomposition and the Axiomatic Approach: Two Axioms
 (DP)11 = means to place carton into system
 - (DP)12 = means to maintain position of carton
 - (DP)13 = device to close the carton's flaps
 - (DP)14 = taping mechanism
 - (DP)15 = means to release carton
 - (DP)16 = carton removal device

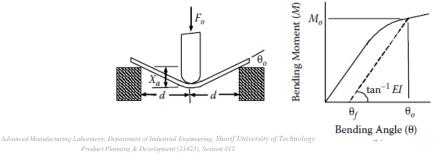
Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

Product Functional Requirements and Functional Decomposition

Functional Decomposition and the Axiomatic Approach: Two Axioms

- Product Functional Requirements and Functional Decomposition
- Functional Decomposition and the Axiomatic Approach: Two Axioms • (FR)111 = Orient carton
 - (FR)112 = Propel one carton into the system
 - *with the corresponding design parameters:*
 - *(DP)111 = Carton orienting device*
 - *(DP)112 = Carton insertion (forward motion) device*

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12


Product Functional Requirements

- Functional Decomposition
- and the Axiomatic Approach: Two A

Product Functional Requirements and Functional Decomposition Functional Decomposition and the Axiomatic Approach: Two Axioms Intelligent V-Bending Machine The objective is to develop a procedure that produces a curved metal part of constant thickness from a thin, flat sheet of metal. The generation of the means to satisfy this objective is governed by certain physical laws The corresponding DP is a procedure that produces the curved part.

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - $FR = Produce \ a \ bend \ angle \ \theta f \pm \Delta \theta f \ using \ sheet \ metal \ bending, \ regardless \ of \ how \ the \ material \ and \ thickness \ properties \ vary$
 - DP = System to generate and control the bend angle

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - The moment Mo is sufficiently high so that it causes the plate to undergo permanent deformation at the corresponding bend angle θo.
 - Corresponding to θo is a displacement Xa under the applied force Fo When Mo is released, however, there is a certain amount of spring-back to a bend angle $\theta f < \theta o$.
 - Corresponding to θf is a displacement ΔXa , which is the amount of permanent deformation under the point where the force was applied.
 - From classical beam/plate theory, it is known that $Xa \sim \theta \sim F/EI$, $M \sim F$ and, therefore, $M/\theta \sim EI$, where E the Young's modulus and I is the moment of inertia of the cross section.

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - For a fixed method of supporting the beam/plate, we have that

$$M_o = F_o d/2$$

$$\theta_o = \tan^{-1}(X_a/d)$$

$$\theta_f = \tan^{-1}(\Delta X_a/d)$$

If we are able to measure Fo and Xa (and, consequently, ΔXa), then we have a means of controlling the process.

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine

$$\theta_f = \theta_o - \frac{M_o}{\tan^{-1} EI} = \tan^{-1}(X_a/d) - \frac{F_o d/2}{\tan^{-1} EI}$$

- We have three independent parameters:
 - Mo, which is proportional to the applied force Fo;
 - *EI*, which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - θf , which is the resulting bend angle of the plate after the release of Mo..

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - We have three independent parameters:
 - *Mo, which is proportional to the applied force Fo;*
 - *EI*, which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - θf , which is the resulting bend angle of the plate after the release of Mo..

 $(FR)_1 = M_o$ (Generate moment) $(FR)_2 = \theta_o$ (Bend and deform metal) $(FR)_3 = \theta_f$ (Release to final bend angle)

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - We have three independent parameters:
 - Mo, which is proportional to the applied force Fo;
 - *EI*, which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - θf , which is the resulting bend angle of the plate after the release of Mo..

$$\begin{cases} M_o \\ \theta_o \\ \theta_f \\ \theta_f \\ \end{cases} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{cases} F_o d/2 \\ \tan^{-1}(X_a/d) \\ F_o d/(2\tan^{-1}EI) \end{cases}$$

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine

$$\begin{cases} M_o \\ \theta_o \\ \theta_f \end{cases} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{cases} F_o d/2 \\ \tan^{-1}(X_a/d) \\ F_o d/(2\tan^{-1}EI) \end{cases}$$

- In order to implement this design equation, the following procedure is employed.
- The punch is brought down and the plate is subjected to a force F' o, which results in a displacement under it of X'a.
- The punch is removed and $\Delta X'a$ is measured. From these three measurements, we determine tan-1 EI.
- We now apply a slowly increasing force Fo and continuously monitor Fo and Xa until their values produce the desired θf

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology Product Planning & Development (21423), Session #12

