Course Description

- **Instructor**
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai

- **Recommended prerequisite**
 - Manufacturing process I (21-418)

- **Class time**
 - Sunday-Tuesday 18:00-19:30

- **Course evaluation**
 - Mid-term (25%)
 - Final exam (40%)
 - Quiz (5%)
 - Exercise (Manufacturing Lab.) (30%)
Session reference

- **Reference:**

Course Description (Continued.)

- **Contents:**
 - Product development in the changing Global world
 - Stages of Product Development
 - The Structure of the Product Design Process
 - Early design: Requirement definition and conceptual Design
 - Trade-off analyses: Optimization using cost and utility Metrics
 - Detailed design: Analysis and Modeling
 - Design Review: Designing to Ensure Quality
 - Production System: Strategies, planning, and methodologies
 - Production System Development
 - Planning and Preparation for Efficient Development
 - Supply chain: Logistics, packaging, supply chain, and the environment
Trade-off analyses: Optimization using cost and

- Early Design:

Product Functional Requirements and Functional Decomposition

- Functional modeling
Functional Decomposition and the Axiomatic Approach

- AD gives a means of clarifying and focusing both the product’s functions and the objectives that the design should meet.

- The axiomatic approach provides a compact visual way of expressing the design intent and the overall design objective.

- Functional Requirements are defined as the minimum number of independent mandatory requirements that completely characterize the design objectives for a specific need.

- If possible, they must be independent of each other at every level in the design hierarchy.

\[\{FR\} = \begin{pmatrix} (FR)_1 \\ \vdots \\ (FR)_n \end{pmatrix} \quad \text{and} \quad \{DP\} = \begin{pmatrix} (DP)_1 \\ \vdots \\ (DP)_n \end{pmatrix} \]

\[\{FR\} = [A]\{DP\} \]

\[[A] = \begin{bmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \ldots & A_{nn} \end{bmatrix} \]
Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - There are three types of solutions to the problem.
 - The first type of solution is the one that satisfies Axiom 1 and is attained when \([A]\) is a diagonal matrix. This is called the uncoupled solution.
 - The second type of solution always violates Axiom 1. In this case and the solution is called coupled.
 - The third solution is called a decoupled solution, and the independence of the FRs can be assured if we arrange the DPs in a certain order to arrive at the design matrix.

Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - Phrasing of the Functional Requirements
 - “Tow a disabled automobile from one location to another;”
 - “Transport a disabled automobile from one location to another;”
 - “Move a disabled automobile from one location to another.”
Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms

- (FR)11 = Place one carton into the system

- (FR)12 = Maintain position of carton

- (FR)13 = Close the carton’s flaps

- (FR)14 = Tape carton

- (FR)15 = Release carton

- (FR)16 = Remove sealed box from system
Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - (DP)\(_{11}\) = means to place carton into system
 - (DP)\(_{12}\) = means to maintain position of carton
 - (DP)\(_{13}\) = device to close the carton’s flaps
 - (DP)\(_{14}\) = taping mechanism
 - (DP)\(_{15}\) = means to release carton
 - (DP)\(_{16}\) = carton removal device
Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - *(FR)111 = Orient carton*
 - *(FR)112 = Propel one carton into the system*

- with the corresponding design parameters:
 \[
 \begin{pmatrix}
 (FR)_{111} \\
 (FR)_{112}
 \end{pmatrix}
 =
 \begin{pmatrix}
 x & 0 \\
 x & x
 \end{pmatrix}
 \begin{pmatrix}
 (DP)_{111} \\
 (DP)_{112}
 \end{pmatrix}
 \]
- *(DP)111 = Carton orienting device*
- *(DP)112 = Carton insertion (forward motion) device*
Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - **Intelligent V-Bending Machine**
 - The objective is to develop a procedure that produces a curved metal part of constant thickness from a thin, flat sheet of metal.

- **The generation of the means to satisfy this objective is governed by certain physical laws**

- **The corresponding DP is a procedure that produces the curved part.**

Advanced Manufacturing Laboratory, Department of Industrial Engineering, Sharif University of Technology
Product Planning & Development (21423), Session #12
Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - The moment M_0 is sufficiently high so that it causes the plate to undergo permanent deformation at the corresponding bend angle θ_0.

- Corresponding to θ_0 is a displacement X_a under the applied force F_0 When M_0 is released, however, there is a certain amount of spring-back to a bend angle $\theta_f < \theta_0$.

- Corresponding to θ_f is a displacement ΔX_a, which is the amount of permanent deformation under the point where the force was applied.

- From classical beam/plate theory, it is known that $X_a \sim \theta \sim F/EI$, $M \sim F$ and, therefore, $M/\theta \sim EI$, where E the Young's modulus and I is the moment of inertia of the cross section.

- For a fixed method of supporting the beam/plate, we have that

 \[
 M_0 = F_0 d/2 \\
 \theta_0 = \tan^{-1}(X_a/d) \\
 \theta_f = \tan^{-1}(\Delta X_a/d)
 \]

If we are able to measure F_0 and X_a (and, consequently, ΔX_a), then we have a means of controlling the process.
Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - **Intelligent V-Bending Machine**

\[
\theta_f = \theta_o - \frac{M_o}{\tan^{-1}(d/EI)} \cdot \tan^{-1}(X_d/d) - \frac{F_o d/2}{\tan^{-1}(d/EI)}
\]

- We have three independent parameters:
 - \(M_o \), which is proportional to the applied force \(F_o \);
 - \(EI \), which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - \(\theta_f \), which is the resulting bend angle of the plate after the release of \(M_o \).

Product Functional Requirements and Functional Decomposition

- **Functional Decomposition and the Axiomatic Approach: Two Axioms**
 - **Intelligent V-Bending Machine**
 - We have three independent parameters:
 - \(M_o \), which is proportional to the applied force \(F_o \);
 - \(EI \), which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - \(\theta_f \), which is the resulting bend angle of the plate after the release of \(M_o \).

\[
\begin{align*}
(FR)_1 &= M_o & \text{(Generate moment)} \\
(FR)_2 &= \theta_o & \text{(Bend and deform metal)} \\
(FR)_3 &= \theta_f & \text{(Release to final bend angle)}
\end{align*}
\]
Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine
 - We have three independent parameters:
 - \(Mo \), which is proportional to the applied force \(Fo \);
 - \(EI \), which is a function of a physical property of the material and the cross-sectional dimensions of the plate; and
 - \(\theta_f \), which is the resulting bend angle of the plate after the release of \(Mo \).

\[
\begin{bmatrix}
 M_o \\
 \theta_o \\
 \theta_f
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
 F_o d/2 \\
 \tan^{-1}(X_a/d) \\
 F_o d/(2 \tan^{-1} EI)
\end{bmatrix}
\]

Product Functional Requirements and Functional Decomposition

- Functional Decomposition and the Axiomatic Approach: Two Axioms
 - Intelligent V-Bending Machine

- In order to implement this design equation, the following procedure is employed.
 - The punch is brought down and the plate is subjected to a force \(F' o \), which results in a displacement under it of \(X'a \).
 - The punch is removed and \(\Delta X'a \) is measured. From these three measurements, we determine \(\tan^{-1} EI \).
 - We now apply a slowly increasing force \(Fo \) and continuously monitor \(Fo \) and \(Xa \) until their values produce the desired \(\theta_f \).
Project

- Product Functional Requirements