Product Planning & Development
(21-423)

Advanced Manufacturing Laboratory
Department of Industrial Engineering
Sharif University of Technology

Session #14

Course Description

- **Instructor**
 - Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology
 - Email: FValilai@sharif.edu, Tel: 6616-5706
 - Website: Sharif.edu/~fvalilai

- **Recommended prerequisite**
 - Manufacturing process I (21-418)

- **Class time**
 - Sunday-Tuesday 18:00-19:30

- **Course evaluation**
 - Mid-term (25%)
 - Final exam (40%)
 - Quiz (5%)
 - Exercise (Manufacturing Lab.) (30%)
Session reference

- Reference:

Course Description (Continued.)

- Contents:
 - Product development in the changing Global world
 - Stages of Product Development
 - The Structure of the Product Design Process
 - Early design: Requirement definition and conceptual Design
 - Trade-off analyses: Optimization using cost and utility Metrics
 - Detailed design: Analysis and Modeling
 - Design Review: Designing to Ensure Quality
 - Production System: Strategies, planning, and methodologies
 - Production System Development
 - Planning and Preparation for Efficient Development
 - Supply chain: Logistics, packaging, supply chain, and the environment
Detailed design: Analysis and Modeling

- Detailed Design:
 - Prototypes in detailed design
 - Prototypes play a large role in all phases of development especially in detailed design.

 - Physical models and software models (virtual reality) are used to gather information to reduce uncertainty, optimize parameters, and test the design.

 - Prototyping provides information that is especially important for:
 - Information that is not available
 - Software and software interfaces
 - Global and cultural design aspects
 - Innovative or creative products that are very different from the norm
 - Data for unknown uses or environments
Detailed design: Analysis and Modeling

Detailed Design:

- **Modeling and simulation**
 - Modeling and simulation are analysis tools for evaluating and optimizing designs and products.
 - The purpose is to assist the design team by constituting a process in which models simulate one or more elements of either the product or the environment.
 - Simulation and modeling can be low cost and effective methods to gather and verify information when compared to full-scale prototypes.
 - Modeling allows a designer to experiment with requirements, optimize design decisions, and verify product performance.

Detailed design: Analysis and Modeling

Detailed Design:

- **Modeling and simulation**
 - **Reason for simulation**
 - Increase the level of knowledge of how the product interacts with its environment
 - Assess the benefits, costs, and attributes of each requirement
 - Perform design trade-off studies to optimize various design elements,
 - Verify that the design can meet all requirements
Detailed design: Analysis and Modeling

- Detailed Design:
 - Modeling and simulation
 - Effective simulation
 - Realistic and correct
 - Useful and usable
 - Well-planned, well-managed, and well-coordinated
 - User acceptance
 - Favorable benefits-cost ratio
 - Modular, flexible, and expandable
 - Transportable

Who are the users?
- Simulation staff
- Designers
- Management
- Customer
- Support engineers

What will the simulation be used for?
- Experimentation
- Development of requirements
- Design trade-offs
- Simulating environments
- Test
- Design verification
- Documentation

What outputs are required from the simulation?
- Statistics and plots
- Design optimization
- Hardware signals
- Software signals
- Human interactions

How does the user want to use the simulation?
- Interactive or batch
- Operator in loop
- Hardware in loop
Detailed design: Analysis and Modeling

- **Detailed Design:**
 - Modeling and simulation
 - Effective simulation
 - Realistic and correct
 - Useful and usable
 - Well-planned, well-managed, and well-coordinated
 - User acceptance
 - Favorable benefits-cost ratio

- Degree of realism
 - A few complex simulations versus many simpler simulations
 - Digital computer versus analog computer versus hybrid computer
 - Choice of computer manufacturer and software packages
 - Discrete time versus continuous time
 - Periodic steps versus event-driven steps
 - Integration method and sample interval
 - Deterministic versus random inputs
 - Use of Monte Carlo techniques
 - Data availability and collection methods
 - Training requirements

Detailed design: Analysis and Modeling

- **Detailed Design:**
 - Analyzing
 - Worst-case, Parameter Variation, And Statistical Analyses
 - Three methods are often used in design analyses to compensate for variability.
 - These methods are
 - worst-case analysis,
 - parameter variation analysis, and
 - statistical analysis methods, which includes root sum square, moment, and Monte Carlo techniques.
 - A major decision in the product development process is to select which models will be used for different design parameters to ensure an optimal design without “over designing”.
Detailed design: Analysis and Modeling

Detailed Design:

- Analyzing
 - Worst-case,

- A worst-case analysis is a rigorous evaluation of the ability of a design to meet requirements under the worst possible combination of circumstances.

- This is accomplished by determining the worst-case values of critical design parameters, high and low, slow and fast, small and large, and long term degradations that could affect performance, reliability, producibility, and so on.

- If the overall performance of each part or software module under these conditions remains within specified limits, then the design is reliable over the worst possible conditions.

Detailed design: Analysis and Modeling

Detailed Design:

- Analyzing
 - Parameter Variation
 - The parameter variation analysis method is a less rigorous methodology that determines allowable parameter variation before a design fails to function.

 - Parameters, either one at a time or two at a time, are varied in steps from their maximum to their minimum limits, while other input parameters are held at their nominal value.
Project

- Product Functional Requirements